过年吃什么| 鲫鱼吃什么| 绝交是什么意思| 神经痛吃什么药好| 手癣用什么药膏效果好| 六月初四是什么星座| 91是什么东西| 乳腺癌的症状是什么| 紧凑是什么意思| 筋膜炎用什么药好| hivab是什么检测| 钠偏低是什么原因| 内膜回声欠均匀是什么意思| 非诚勿扰是什么意思| 什么什么若狂| 来月经头晕是什么原因| 尿多是什么原因男性| 包公是什么意思| 什么牌助听器好| 实性结节什么意思| 阴唇大什么原因| 什么饮料解暑| 马刺是什么| 什么冲冲| 电位是什么| 血干了是什么颜色| suv什么意思| 龙头龟身是什么神兽| 经常胸闷是什么原因| 美尼尔症是什么病| 世界上什么东西最大| 孕妇吃海参对胎儿有什么好处| 内分泌失调什么症状| 购物狂是什么心理疾病| 黄鼠狼的天敌是什么动物| plt是什么意思| 肌张力障碍是什么病| 青少年额头长痘痘是什么原因| 湿疹涂什么药膏| 怀孕了什么不可以吃| 频繁什么意思| 过去式加什么| 脚长水泡是什么原因| 蜗牛的天敌是什么| 什么是煞气| 湿疹用什么药膏| 补体c1q偏高说明什么| 耳朵嗡嗡的响是什么原因| 邮政什么时候上班| 月子吃什么| 高山茶属于什么茶| swisse是什么意思| 上上签什么意思| 人为什么要睡觉| 口水臭是什么原因引起的| 深闺是什么意思| 武则天叫什么| 颜控什么意思| 抽动症是什么原因造成的| 点痣后用什么修复最好| 碱性食物对身体有什么好处| 儿童嗓子疼吃什么药| 小孩喜欢趴着睡觉是什么原因| 单核细胞高是什么感染| gp是什么的缩写| 梦见下雪是什么意思| 汉卿是什么意思| 白牌黑字是什么车牌| 炖猪排骨放什么调料| 柔是什么意思| 零点是什么| 经常拉稀是什么原因| 派出所什么时候上班| 秦始皇墓为什么不敢挖| 梦见剪头发是什么意思| 梦见捡硬币是什么预兆| 9像什么| 醒酒喝什么饮料| 犹太人是什么人种| 计发月数是什么意思| 屁股疼挂什么科室| movies是什么意思| 为什么一吃东西就拉肚子| 梦到男朋友出轨了预示什么意思| 什么食物含蛋白质多| 什么火没有烟| 琼花是什么意思| 乙肝通过什么途径传染| 什么的照射| 什么时候喝咖啡最好| 兰花是什么季节开的| 牙龈有点发黑是什么原因| 好整以暇什么意思| 做宫腔镜检查需要提前做什么准备| 吃什么补充酪氨酸酶| 乐果是什么农药| 尾牙是什么意思| 飧泄是什么意思| 配偶什么意思| 北边是什么生肖| 睡醒后口干口苦是什么原因| 喝椰子粉有什么好处| 结节性红斑是什么病| 尿频尿急尿不尽挂什么科| igm是什么| 什么可当| 细菌性结膜炎用什么眼药水| 早起嘴苦是什么原因| 尿潜血阳性什么意思| 丁目是什么意思| 甘油三酯高吃什么药| 禾末念什么| 清秋是什么意思| 螃蟹过街的歇后语是什么| 睾丸萎缩是什么原因| 什么是皮疹| roa是什么意思| 脉数是什么意思| 什么是快捷支付| 血糖高适合喝什么酒| 什么歌最好听| 痰湿是什么意思| 狗狗吃南瓜有什么好处| 人血白蛋白适合什么人| 光明会到底是干什么的| 什么是尿失禁| 马马虎虎指什么生肖| 肌层回声欠均匀是什么意思| 车什么马什么| 为什么会莫名其妙流鼻血| 饱的偏旁叫什么| 消融是什么意思| 神经性头疼吃什么药效果好| 六个坚持是什么| 小孩吃什么水果好| 这什么情况| 什么小吃最火爆最赚钱| 小学生什么时候考试| 风骚什么意思| 什么红酒好喝| adl是什么意思| 上呼吸道感染吃什么| 头臂长是什么意思| 下面出血是什么原因| 11月份是什么星座| 干涉是什么意思| 鲫鱼吃什么食物| 肾盂肾炎吃什么药| 敏五行属什么| 什么是周岁| 牛奶不能和什么一起吃| 做完核磁共振后需要注意什么| 风热感冒吃什么水果| 从容不迫什么意思| 胃胀反酸吃什么药| 长期大便不成形是什么原因造成的| os什么意思| 脑梗长期吃什么药好| 什么人不能吃绿豆| prc是什么意思| 说一个人轴是什么意思| 经常想吐恶心是什么原因| 排尿带血是什么原因| rsl是什么意思| 什么都不怕| 夫妻宫是什么意思| 植物功能紊乱吃什么药| 鹅吃什么食物| 焦虑症是什么意思| 树冠是什么| 吃三七粉有什么功效| 海蓝宝五行属什么| 前白蛋白偏低是什么意思| 什么馅的包子好吃| 刘诗诗是什么样的人| 985什么意思| 什么叫窦性心律| 巴图是什么意思| 为什么不能近亲结婚| 手脚不协调是什么原因| 入殓师是干什么的| 赭石色是什么颜色| 这是什么虫| 一什么缸| 大名鼎鼎是什么意思| 痔疮是什么样子的| 卧蚕是什么意思| 2003年五行属什么| 梦到刷牙什么意思| 送病人什么礼物好| 什么力气| 一毛不拔指什么生肖| 阴道发炎用什么药| 盐酸盐是什么| 一个王一个月念什么| 名人轶事是什么意思| 早上5点是什么时辰| 来月经可以吃什么水果| 男人有泪痣代表什么| 吃什么对皮肤好还能美白的| 木耳属于什么类| 到底为了什么| 1月19日什么星座| 烦躁是什么原因| 蛋白质是什么意思| 心理是什么意思| 疳积有什么症状| 无所不用其极是什么意思| 什么是精神出轨| 喝什么茶可以降尿酸| 狐臭什么味| 膝盖疼应该挂什么科| 血小板压积偏高是什么原因| 庹是什么意思| 孟姜女属什么生肖| 取环后月经量少是什么原因| 牙龈长泡是什么原因| 姜汁可乐有什么功效与作用| 干什么最赚钱| 柯萨奇病毒是什么病| 荷花什么时候种植| 美白吃什么| 平安夜送女朋友什么| 杰克琼斯属于什么档次| 晚上8点是什么时辰| 虬角为什么要染成绿色| a216是什么材质| 晚上8点半是什么时辰| 水瓶座与什么星座最配| 乳头痒是什么原因| 红细胞压积什么意思| 脑梗的前兆是什么| 何许人也是什么意思| 火车头是什么意思| 硅是什么| 九九重阳节是什么意思| 屈光检查是什么| 结核t细胞阳性说明什么| 拉稀屎是什么原因| 黄芪的功效与作用是什么| 皮蛋是什么蛋| 你是什么动物| cph是什么意思| 早上11点是什么时辰| 虚不受补吃什么中成药| 海洋中最大的动物是什么| 腹泻吃什么好| 隋朝之前是什么朝代| 人体的三道防线是什么| 反流性胃炎吃什么药| 大蒜有什么功效| 四是什么生肖| 九死一生是什么生肖| 输卵管堵塞什么症状| 胰腺不好有什么症状| 邓超属什么生肖| 喉咙痛看什么科| hcg什么时候查最准确| 颈部淋巴结肿大吃什么药| 为什么发动文化大革命| 生鱼是什么鱼| 药流之后需要注意什么| 红萝卜什么时候种| 橄榄是什么| 百度Jump to content

车讯:奔驰新款SL级/S级敞篷版将年内引入国内

From Wikipedia, the free encyclopedia
百度 要大力弘扬社会主义法治精神,树立宪法意识、增强宪法自信,自觉忠于宪法、遵守宪法、维护宪法,带头尊法、学法、守法、用法,严格依照宪法法律履职尽责,善于运用法治思维和法治方式惩治腐败,不断提高反腐败工作规范化法治化水平。

Nonlinear mixed-effects models constitute a class of statistical models generalizing linear mixed-effects models. Like linear mixed-effects models, they are particularly useful in settings where there are multiple measurements within the same statistical units or when there are dependencies between measurements on related statistical units. Nonlinear mixed-effects models are applied in many fields including medicine, public health, pharmacology, and ecology.[1][2]

Definition

[edit]

While any statistical model containing both fixed effects and random effects is an example of a nonlinear mixed-effects model, the most commonly used models are members of the class of nonlinear mixed-effects models for repeated measures[1]

where

  • is the number of groups/subjects,
  • is the number of observations for the th group/subject,
  • is a real-valued differentiable function of a group-specific parameter vector and a covariate vector ,
  • is modeled as a linear mixed-effects model where is a vector of fixed effects and is a vector of random effects associated with group , and
  • is a random variable describing additive noise.

Estimation

[edit]

When the model is only nonlinear in fixed effects and the random effects are Gaussian, maximum-likelihood estimation can be done using nonlinear least squares methods, although asymptotic properties of estimators and test statistics may differ from the conventional general linear model. In the more general setting, there exist several methods for doing maximum-likelihood estimation or maximum a posteriori estimation in certain classes of nonlinear mixed-effects models – typically under the assumption of normally distributed random variables. A popular approach is the Lindstrom-Bates algorithm[3] which relies on iteratively optimizing a nonlinear problem, locally linearizing the model around this optimum and then employing conventional methods from linear mixed-effects models to do maximum likelihood estimation. Stochastic approximation of the expectation-maximization algorithm gives an alternative approach for doing maximum-likelihood estimation.[4]

Applications

[edit]

Example: Disease progression modeling

[edit]

Nonlinear mixed-effects models have been used for modeling progression of disease.[5] In progressive disease, the temporal patterns of progression on outcome variables may follow a nonlinear temporal shape that is similar between patients. However, the stage of disease of an individual may not be known or only partially known from what can be measured. Therefore, a latent time variable that describe individual disease stage (i.e. where the patient is along the nonlinear mean curve) can be included in the model.

Example: Modeling cognitive decline in Alzheimer's disease

[edit]
Example of disease progression modeling of longitudinal ADAS-Cog scores using the progmod R package.[5]

Alzheimer's disease is characterized by a progressive cognitive deterioration. However, patients may differ widely in cognitive ability and reserve, so cognitive testing at a single time point can often only be used to coarsely group individuals in different stages of disease. Now suppose we have a set of longitudinal cognitive data from individuals that are each categorized as having either normal cognition (CN), mild cognitive impairment (MCI) or dementia (DEM) at the baseline visit (time corresponding to measurement ). These longitudinal trajectories can be modeled using a nonlinear mixed effects model that allows differences in disease state based on baseline categorization:

where

  • is a function that models the mean time-profile of cognitive decline whose shape is determined by the parameters ,
  • represents observation time (e.g. time since baseline in the study),
  • and are dummy variables that are 1 if individual has MCI or dementia at baseline and 0 otherwise,
  • and are parameters that model the difference in disease progression of the MCI and dementia groups relative to the cognitively normal,
  • is the difference in disease stage of individual relative to his/her baseline category, and
  • is a random variable describing additive noise.

An example of such a model with an exponential mean function fitted to longitudinal measurements of the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) is shown in the box. As shown, the inclusion of fixed effects of baseline categorization (MCI or dementia relative to normal cognition) and the random effect of individual continuous disease stage aligns the trajectories of cognitive deterioration to reveal a common pattern of cognitive decline.

Example: Growth analysis

[edit]
Estimation of a mean height curve for boys from the Berkeley Growth Study with and without warping. Warping model is fitted as a nonlinear mixed-effects model using the pavpop R package.[6]

Growth phenomena often follow nonlinear patters (e.g. logistic growth, exponential growth, and hyperbolic growth). Factors such as nutrient deficiency may both directly affect the measured outcome (e.g. organisms with lack of nutrients end up smaller), but possibly also timing (e.g. organisms with lack of nutrients grow at a slower pace). If a model fails to account for the differences in timing, the estimated population-level curves may smooth out finer details due to lack of synchronization between organisms. Nonlinear mixed-effects models enable simultaneous modeling of individual differences in growth outcomes and timing.

Example: Modeling human height

[edit]

Models for estimating the mean curves of human height and weight as a function of age and the natural variation around the mean are used to create growth charts. The growth of children can however become desynchronized due to both genetic and environmental factors. For example, age at onset of puberty and its associated height spurt can vary several years between adolescents. Therefore, cross-sectional studies may underestimate the magnitude of the pubertal height spurt because age is not synchronized with biological development. The differences in biological development can be modeled using random effects that describe a mapping of observed age to a latent biological age using a so-called warping function . A simple nonlinear mixed-effects model with this structure is given by

where

  • is a function that represents the height development of a typical child as a function of age. Its shape is determined by the parameters ,
  • is the age of child corresponding to the height measurement ,
  • is a warping function that maps age to biological development to synchronize. Its shape is determined by the random effects ,
  • is a random variable describing additive variation (e.g. consistent differences in height between children and measurement noise).

There exists several methods and software packages for fitting such models. The so-called SITAR model[7] can fit such models using warping functions that are affine transformations of time (i.e. additive shifts in biological age and differences in rate of maturation), while the so-called pavpop model[6] can fit models with smoothly-varying warping functions. An example of the latter is shown in the box.

Example: Population Pharmacokinetic/pharmacodynamic modeling

[edit]
Basic pharmacokinetic processes affecting the fate of ingested substances. Nonlinear mixed-effects modeling can be used to estimate the population-level effects of these processes while also modeling the individual variation between subjects.

PK/PD models for describing exposure-response relationships such as the Emax model can be formulated as nonlinear mixed-effects models.[8] The mixed-model approach allows modeling of both population level and individual differences in effects that have a nonlinear effect on the observed outcomes, for example the rate at which a compound is being metabolized or distributed in the body.

Example: COVID-19 epidemiological modeling

[edit]
Extrapolated infection trajectories of 40 countries severely affected by COVID-19 and grand (population) average through May 14th

The platform of the nonlinear mixed effect models can be used to describe infection trajectories of subjects and understand some common features shared across the subjects. In epidemiological problems, subjects can be countries, states, or counties, etc. This can be particularly useful in estimating a future trend of the epidemic in an early stage of pendemic where nearly little information is known regarding the disease.[9]

Example: Prediction of oil production curve of shale oil wells at a new location with latent kriging

[edit]
Prediction of oil production rate decline curve obtained by latent kriging. 324 training wells and two test wells in the Eagle Ford Shale Reservoir of South Texas (top left); A schematic example of a hydraulically fractured horizontal well (bottom left); Predicted curves at test wells via latent kriging method (right)

The eventual success of petroleum development projects relies on a large degree of well construction costs. As for unconventional oil and gas reservoirs, because of very low permeability, and a flow mechanism very different from that of conventional reservoirs, estimates for the well construction cost often contain high levels of uncertainty, and oil companies need to make heavy investment in the drilling and completion phase of the wells. The overall recent commercial success rate of horizontal wells in the United States is known to be 65%, which implies that only 2 out of 3 drilled wells will be commercially successful. For this reason, one of the crucial tasks of petroleum engineers is to quantify the uncertainty associated with oil or gas production from shale reservoirs, and further, to predict an approximated production behavior of a new well at a new location given specific completion data before actual drilling takes place to save a large degree of well construction costs.

The platform of the nonlinear mixed effect models can be extended to consider the spatial association by incorporating the geostatistical processes such as Gaussian process on the second stage of the model as follows:[10]

where

  • is a function that models the mean time-profile of log-scaled oil production rate whose shape is determined by the parameters . The function is obtained from taking logarithm to the rate decline curve used in decline curve analysis,
  • represents covariates obtained from the completion process of the hydraulic fracturing and horizontal directional drilling for the -th well,
  • represents the spatial location (longitude, latitude) of the -th well,
  • represents the Gaussian white noise with error variance (also called the nugget effect),
  • represents the Gaussian process with Gaussian covariance function ,
  • represents the horseshoe shrinkage prior.

The Gaussian process regressions used on the latent level (the second stage) eventually produce kriging predictors for the curve parameters that dictate the shape of the mean curve on the date level (the first level). As the kriging techniques have been employed in the latent level, this technique is called latent kriging. The right panels show the prediction results of the latent kriging method applied to the two test wells in the Eagle Ford Shale Reservoir of South Texas.

Bayesian nonlinear mixed-effects model

[edit]
Bayesian research cycle using Bayesian nonlinear mixed effects model: (a) standard research cycle and (b) Bayesian-specific workflow.[11]

The framework of Bayesian hierarchical modeling is frequently used in diverse applications. Particularly, Bayesian nonlinear mixed-effects models have recently received significant attention. A basic version of the Bayesian nonlinear mixed-effects models is represented as the following three-stage:

Stage 1: Individual-Level Model

Stage 2: Population Model

Stage 3: Prior

Here, denotes the continuous response of the -th subject at the time point , and is the -th covariate of the -th subject. Parameters involved in the model are written in Greek letters. is a known function parameterized by the -dimensional vector . Typically, is a `nonlinear' function and describes the temporal trajectory of individuals. In the model, and describe within-individual variability and between-individual variability, respectively. If Stage 3: Prior is not considered, then the model reduces to a frequentist nonlinear mixed-effect model.


A central task in the application of the Bayesian nonlinear mixed-effect models is to evaluate the posterior density:


The panel on the right displays Bayesian research cycle using Bayesian nonlinear mixed-effects model.[12] A research cycle using the Bayesian nonlinear mixed-effects model comprises two steps: (a) standard research cycle and (b) Bayesian-specific workflow. Standard research cycle involves literature review, defining a problem and specifying the research question and hypothesis. Bayesian-specific workflow comprises three sub-steps: (b)–(i) formalizing prior distributions based on background knowledge and prior elicitation; (b)–(ii) determining the likelihood function based on a nonlinear function ; and (b)–(iii) making a posterior inference. The resulting posterior inference can be used to start a new research cycle.

See also

[edit]


References

[edit]
  1. ^ a b Pinheiro, J; Bates, DM (2006). Mixed-effects models in S and S-PLUS. Statistics and Computing. New York: Springer Science & Business Media. doi:10.1007/b98882. ISBN 0-387-98957-9.
  2. ^ Bolker, BM (2008). Ecological models and data in R. Princeton University Press. ISBN 978-0-691-12522-0. {{cite book}}: |website= ignored (help)
  3. ^ Lindstrom, MJ; Bates, DM (1990). "Nonlinear mixed effects models for repeated measures data". Biometrics. 46 (3): 673–687. doi:10.2307/2532087. JSTOR 2532087. PMID 2242409.
  4. ^ Kuhn, E; Lavielle, M (2005). "Maximum likelihood estimation in nonlinear mixed effects models". Computational Statistics & Data Analysis. 49 (4): 1020–1038. doi:10.1016/j.csda.2004.07.002.
  5. ^ a b Raket, LL (2020). "Statistical disease progression modeling in Alzheimer's disease". Frontiers in Big Data. 3: 24. doi:10.3389/fdata.2020.00024. PMC 7931952. PMID 33693397. S2CID 221105601.
  6. ^ a b Raket LL, Sommer S, Markussen B (2014). "A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data". Pattern Recognition Letters. 38: 1–7. doi:10.1016/j.patrec.2013.10.018.
  7. ^ Cole TJ, Donaldson MD, Ben-Shlomo Y (2010). "SITAR—a useful instrument for growth curve analysis". International Journal of Epidemiology. 39 (6): 1558–66. doi:10.1093/ije/dyq115. PMC 2992626. PMID 20647267. S2CID 17816715.
  8. ^ Jonsson, EN; Karlsson, MO; Wade, JR (2000). "Nonlinearity detection: advantages of nonlinear mixed-effects modeling". AAPS PharmSci. 2 (3): E32. doi:10.1208/ps020332. PMC 2761142. PMID 11741248.
  9. ^ Lee, Se Yoon; Lei, Bowen; Mallick, Bani (2020). "Estimation of COVID-19 spread curves integrating global data and borrowing information". PLOS ONE. 15 (7): e0236860. arXiv:2005.00662. doi:10.1371/journal.pone.0236860. PMC 7390340. PMID 32726361.
  10. ^ Lee, Se Yoon; Mallick, Bani (2021). "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas". Sankhya B. 84: 1–43. doi:10.1007/s13571-020-00245-8.
  11. ^ Lee, Se Yoon (2022). "Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications". Mathematics. 10 (6): 898. arXiv:2201.12430. doi:10.3390/math10060898.
  12. ^ Lee, Se Yoon (2022). "Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications". Mathematics. 10 (6): 898. arXiv:2201.12430. doi:10.3390/math10060898.
幽门螺旋杆菌做什么检查 血糖高的人能吃什么水果 阁老是什么意思 腋毛脱落是什么原因 霉菌性阴炎用什么药止痒效果好
褪黑素是什么东西 男人喝什么汤补肾壮阳 什么是粗粮食物有哪些 申时出生五行缺什么 火车票改签是什么意思
窦性心律不齐吃什么药 mpr是什么意思 梦见空棺材是什么意思 农历10月14日是什么星座 ol是什么
食管炎吃什么药最好 口腔扁平苔藓吃什么药 有何指教是什么意思 两个脚脖子肿什么原因 英语八级是什么水平
半枝莲有什么功效hcv9jop8ns2r.cn 什么东西有脚却不能走路hcv9jop4ns4r.cn 检查抑郁症挂什么科hcv8jop7ns2r.cn 什么是业障hcv7jop6ns1r.cn 电波系是什么意思cj623037.com
左肾囊性灶是什么意思wzqsfys.com 吃完羊肉不能吃什么水果hcv8jop4ns6r.cn 熊猫尾巴什么颜色huizhijixie.com 青黄不接是什么意思hcv7jop7ns4r.cn 子宫多发肌瘤是什么意思hcv7jop7ns2r.cn
还俗是什么意思hcv9jop0ns7r.cn 永无止境是什么意思hcv8jop5ns2r.cn 冠冕是什么意思hcv8jop1ns3r.cn 蒂是什么意思hcv9jop4ns5r.cn 脚气挂什么科室wuhaiwuya.com
alk是什么意思hcv7jop4ns5r.cn 总胆红素高是什么意思hcv9jop2ns9r.cn 孩子不长个子是什么原因hcv9jop6ns0r.cn 淋巴细胞百分比偏低是什么原因hcv9jop5ns9r.cn 总是放屁是什么原因引起的hcv8jop7ns4r.cn
百度