什么奶粉好吸收好消化| 一月30号是什么星座| 无住生心是什么意思| 深海鱼油什么牌子好| tablet是什么意思| 脂血是什么意思| 卖什么小吃简单挣钱| 吃什么补蛋白质| 什么是卫校| 血糖高忌吃什么| 炒菜用什么锅最好| 霉菌用什么药效果好| 四六级要带什么| 秒杀是什么意思| 梦见戴孝是什么意思| mr是什么的缩写| 退役和退伍有什么区别| 八珍胶囊适合什么人吃| 取环后需要注意什么| 半夜流鼻血是什么原因| 鼻尖痒是什么原因| 医学五行属什么| noon是什么意思| 属虎和什么属相相冲| 泽去掉三点水念什么| 维多利亚是什么意思| 轻浮的女人是什么意思| 吃海鲜不能吃什么| 脂血是什么意思| iqr是什么意思| 什么血型会导致不孕| 肘关节发黑是什么原因| 啼笑皆非的意思是什么| 德国人是什么人种| 本意是什么意思| 这个梗是什么意思| 水嘴是什么| 复辟什么意思| cos是什么意思啊| 烤乳扇是什么| 鱼缸什么材质的好| 冰心的原名叫什么| 养老保险什么时候开始交| 躯体形式障碍是什么病| 氢是什么| 益母草能治什么病| 高血压有什么症状| 结核抗体阳性说明什么| 妇科衣原体是什么病| pacs什么意思| 蜻蜓点水是什么生肖| 续航是什么意思| 血脂高是什么原因引起的| 空是什么意思| 鸡的贵人是什么生肖| 医院查怀孕做什么检查| 开飞机什么意思| tm什么意思| 失语是什么意思| 子官肌瘤吃什么食物| 赟怎么读 什么意思| 手发麻什么原因| 缺席是什么意思| 七个月宝宝可以吃什么水果| 为什么会甲亢| 止咳吃什么药| 肝火旺喝什么茶| carnival手表什么牌子| 出汗多吃什么药| 矢什么意思| 莲藕什么时候种植最佳| 什么是公共场所| 平日是什么意思| 十一月二十五是什么星座| 为什么会气虚| 肚脐中间疼是什么原因| 包皮手术挂什么科| 哺乳期吃什么下奶| 老人手抖是什么病的预兆| 瘦肉是什么肉| 海带绿豆汤有什么功效| 人次是什么意思| 健脾祛湿吃什么药效果最好| 蚝油可以用什么代替| 12月31号什么星座| 反流性食管炎吃什么中药| 六月初六是什么日子| 腰肌劳损什么症状| 看见壁虎是什么兆头| 月经褐色是什么原因| 住院医师是什么职称| 画蛇添足是什么意思| 炒菜是什么意思| 便秘应该挂什么科室| 三湖慈鲷可以和什么鱼混养| 张学良为什么被囚禁| 煞笔是什么意思| 漫展是干什么的| 肝硬化早期吃什么药| 葡萄什么时候传入中国| 什么叫情劫| 小孩子记忆力差是什么原因| 什么动物站着睡觉| 乌江鱼是什么鱼| 天蝎座与什么星座最配| 梦见别人给我介绍对象是什么意思| 雾霾蓝配什么颜色好看| 蝴蝶宝贝是什么病| 头晕出汗是什么原因| 胸口正中间疼是什么病| 血糖高应该注意什么| 宝宝辅食虾和什么搭配| 樱桃和车厘子有什么区别| 窦性心律逆钟向转位是什么意思| 二甲双胍什么时候吃| 难为你了是什么意思| 不射精是什么原因| 喜欢一个人是什么感觉| 身上为什么会起湿疹| 10月19号什么星座| 飞代表什么生肖| 孕妇痔疮犯了能用什么药膏| 乳腺3类是什么意思| 笃怎么读什么意思| 中午一点是什么时辰| 马齿苋长什么样子| cmyk代表什么颜色| 喝茉莉花茶有什么好处| 大什么大什么| 肺ca是什么病| 低血压吃什么好的最快女性| 小便粉红色是什么原因| 静怡是什么意思| 羊是什么命| 中国民间为什么要吃腊八粥| 三级护理是什么意思| 叶韵是什么意思| 奢侈的近义词是什么| 7月15日是什么节日| 绿色食品指什么食品| 想入非非什么意思| 一什么树干| 郑声是什么意思| 孟子名什么| 什么分什么裂| 晚上10点是什么时辰| 宫颈炎和阴道炎有什么区别| 筋膜炎有什么症状| 双胞胎代表什么生肖| 属兔与什么属相相克| 消化不良吃什么水果好| 芦根煮水的功效是什么| 浮瓜沉李什么意思| 什么水果含维生素b| 脸部麻木是什么原因引起的| 紫颠是什么病怎样治| 早餐吃什么最健康| palace是什么牌子| 嘴里起血泡是什么原因| 同心同德是什么意思| 脚气看什么科| 神经是什么| sq是什么意思| 矬是什么意思| 八月十八号是什么星座| 绮丽的什么| 肝火旺盛吃什么食物| 经常头疼什么原因| 人性是什么| 喝茶对身体有什么好处| 阴毛有什么作用| 结节性硬化症是什么病| 孙策字什么| 日本古代叫什么| 文房四宝指什么| 长期便秘是什么原因引起的| 乾五行属什么| 婴儿血小板低是什么原因| 鱼香肉丝用什么肉| 韩国为什么叫韩国| 06属什么生肖| 0是什么意思网络语言| 贤淑是什么意思| 窦性心律不齐有什么危害| 乇是什么意思| 米鱼是什么鱼| 七嘴八舌是什么生肖| 96166是什么电话| 阳痿早泄吃什么| 怀孕三个月吃什么对胎儿好| 白色念珠菌是什么| 健康证都查什么传染病| 3月14日是什么日子| 学美容要学些什么| 这些是什么| 瞎子吃核桃砸了手是什么生肖| 老茧是什么意思| 虎头什么尾| package什么意思| 一枚什么| 阑尾炎可以吃什么东西| 秦昊的父母是干什么的| 猫代表什么数字| 老人睡眠多是什么原因| 白带什么时候来| 住房公积金缴存基数是什么意思| 肌肉的作用是什么| 肝回声密集是什么意思| 阴虚有什么症状| 谷草谷丙高是什么原因| 失独是什么意思| 弟妹是什么意思| 弱水三千是什么意思| 黄桃不能和什么一起吃| 水痘不能吃什么| 久而久之下一句是什么| psa检查是什么意思| 急性上呼吸道感染是什么引起的| 世界什么名| 水光针是什么| 鸽子怕什么怎么赶走| 3月份生日是什么星座| 手指关节痛什么原因| 卵黄囊是什么意思| 阴沟肠杆菌是什么病| 一九四九年属什么生肖| 什么是比喻| 什么是跨域| 什么是莱赛尔纤维| 单亲家庭是什么意思| 露酒是什么酒| 脐下三寸是什么地方| 刚怀孕初期吃什么好呢| 肾衰透析病人吃什么好| 鸭锁骨是什么部位| 黄芪和什么搭配最好| 日本为什么要侵略中国| 扑感敏又叫什么名字| DHL是什么| 贫血吃什么补的快| 做无创需要注意什么| 什么食物| 备注是什么意思| 小儿疳积是什么意思| 争奇斗艳是什么意思| 什么日子适合搬家| 阴道里面瘙痒是什么原因| 尿喝起来是什么味道| 墨菲定律是什么意思| 胃痛去药店买什么药| 耳垂后面有痣代表什么| 子宫腺肌症吃什么药最有效| 没有奶水怎么办吃什么能下奶| 白酒是什么酿造的| 速度是70迈心情是自由自在什么歌| 移动硬盘什么牌子好| 附属是什么意思| 累得什么| 昱怎么读音是什么| 橡胶过敏是什么症状| 扁桃体炎吃什么消炎药| 土加一笔是什么字| dsa检查是什么| 屁股两边疼是什么原因| 百度Jump to content

新国家安全法的颁布,或对外商投资产生潜在影响

From Wikipedia, the free encyclopedia
百度 对外投资方式逐渐从传统的对外劳务输出、工程承包,向提升产业链、价值链水平转变。

In statistics, the Gauss–Markov theorem (or simply Gauss theorem for some authors)[1] states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero.[2] The errors do not need to be normal, nor do they need to be independent and identically distributed (only uncorrelated with mean zero and homoscedastic with finite variance). The requirement that the estimator be unbiased cannot be dropped, since biased estimators exist with lower variance. See, for example, the James–Stein estimator (which also drops linearity), ridge regression, or simply any degenerate estimator.

The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's.[3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above.[4] A further generalization to non-spherical errors was given by Alexander Aitken.[5]

Scalar case statement

[edit]

Suppose we are given two random variable vectors, and that we want to find the best linear estimator of given , using the best linear estimator Where the parameters and are both real numbers.

Such an estimator would have the same mean and standard deviation as , that is, .

Therefore, if the vector has respective mean and standard deviation , the best linear estimator would be

since has the same mean and standard deviation as .

Statement

[edit]

Suppose we have, in matrix notation, the linear relationship

expanding to,

where are non-random but unobservable parameters, are non-random and observable (called the "explanatory variables"), are random, and so are random. The random variables are called the "disturbance", "noise" or simply "error" (will be contrasted with "residual" later in the article; see errors and residuals in statistics). Note that to include a constant in the model above, one can choose to introduce the constant as a variable with a newly introduced last column of X being unity i.e., for all . Note that though as sample responses, are observable, the following statements and arguments including assumptions, proofs and the others assume under the only condition of knowing but not

The Gauss–Markov assumptions concern the set of error random variables, :

  • They have mean zero:
  • They are homoscedastic, that is all have the same finite variance: for all and
  • Distinct error terms are uncorrelated:

A linear estimator of is a linear combination

in which the coefficients are not allowed to depend on the underlying coefficients , since those are not observable, but are allowed to depend on the values , since these data are observable. (The dependence of the coefficients on each is typically nonlinear; the estimator is linear in each and hence in each random which is why this is "linear" regression.) The estimator is said to be unbiased if and only if

regardless of the values of . Now, let be some linear combination of the coefficients. Then the mean squared error of the corresponding estimation is

in other words, it is the expectation of the square of the weighted sum (across parameters) of the differences between the estimators and the corresponding parameters to be estimated. (Since we are considering the case in which all the parameter estimates are unbiased, this mean squared error is the same as the variance of the linear combination.) The best linear unbiased estimator (BLUE) of the vector of parameters is one with the smallest mean squared error for every vector of linear combination parameters. This is equivalent to the condition that

is a positive semi-definite matrix for every other linear unbiased estimator .

The ordinary least squares estimator (OLS) is the function

of and (where denotes the transpose of ) that minimizes the sum of squares of residuals (misprediction amounts):

The theorem now states that the OLS estimator is a best linear unbiased estimator (BLUE).

The main idea of the proof is that the least-squares estimator is uncorrelated with every linear unbiased estimator of zero, i.e., with every linear combination whose coefficients do not depend upon the unobservable but whose expected value is always zero.

Remark

[edit]

Proof that the OLS indeed minimizes the sum of squares of residuals may proceed as follows with a calculation of the Hessian matrix and showing that it is positive definite.

The MSE function we want to minimize is for a multiple regression model with p variables. The first derivative is where is the design matrix

The Hessian matrix of second derivatives is

Assuming the columns of are linearly independent so that is invertible, let , then

Now let be an eigenvector of .

In terms of vector multiplication, this means where is the eigenvalue corresponding to . Moreover,

Finally, as eigenvector was arbitrary, it means all eigenvalues of are positive, therefore is positive definite. Thus, is indeed a global minimum.

Or, just see that for all vectors . So the Hessian is positive definite if full rank.

Proof

[edit]

Let be another linear estimator of with where is a non-zero matrix. As we're restricting to unbiased estimators, minimum mean squared error implies minimum variance. The goal is therefore to show that such an estimator has a variance no smaller than that of the OLS estimator. We calculate:

Therefore, since is unobservable, is unbiased if and only if . Then:

Since is a positive semidefinite matrix, exceeds by a positive semidefinite matrix.

Remarks on the proof

[edit]

As it has been stated before, the condition of is a positive semidefinite matrix is equivalent to the property that the best linear unbiased estimator of is (best in the sense that it has minimum variance). To see this, let another linear unbiased estimator of .

Moreover, equality holds if and only if . We calculate

This proves that the equality holds if and only if which gives the uniqueness of the OLS estimator as a BLUE.

Generalized least squares estimator

[edit]

The generalized least squares (GLS), developed by Aitken,[5] extends the Gauss–Markov theorem to the case where the error vector has a non-scalar covariance matrix.[6] The Aitken estimator is also a BLUE.

Gauss–Markov theorem as stated in econometrics

[edit]

In most treatments of OLS, the regressors (parameters of interest) in the design matrix are assumed to be fixed in repeated samples. This assumption is considered inappropriate for a predominantly nonexperimental science like econometrics.[7] Instead, the assumptions of the Gauss–Markov theorem are stated conditional on .

Linearity

[edit]

The dependent variable is assumed to be a linear function of the variables specified in the model. The specification must be linear in its parameters. This does not mean that there must be a linear relationship between the independent and dependent variables. The independent variables can take non-linear forms as long as the parameters are linear. The equation qualifies as linear while can be transformed to be linear by replacing by another parameter, say . An equation with a parameter dependent on an independent variable does not qualify as linear, for example , where is a function of .

Data transformations are often used to convert an equation into a linear form. For example, the Cobb–Douglas function—often used in economics—is nonlinear:

But it can be expressed in linear form by taking the natural logarithm of both sides:[8]

This assumption also covers specification issues: assuming that the proper functional form has been selected and there are no omitted variables.

One should be aware, however, that the parameters that minimize the residuals of the transformed equation do not necessarily minimize the residuals of the original equation.

Strict exogeneity

[edit]

For all observations, the expectation—conditional on the regressors—of the error term is zero:[9]

where is the data vector of regressors for the ith observation, and consequently is the data matrix or design matrix.

Geometrically, this assumption implies that and are orthogonal to each other, so that their inner product (i.e., their cross moment) is zero.

This assumption is violated if the explanatory variables are measured with error, or are endogenous.[10] Endogeneity can be the result of simultaneity, where causality flows back and forth between both the dependent and independent variable. Instrumental variable techniques are commonly used to address this problem.

Full rank

[edit]

The sample data matrix must have full column rank.

Otherwise is not invertible and the OLS estimator cannot be computed.

A violation of this assumption is perfect multicollinearity, i.e. some explanatory variables are linearly dependent. One scenario in which this will occur is called "dummy variable trap," when a base dummy variable is not omitted resulting in perfect correlation between the dummy variables and the constant term.[11]

Multicollinearity (as long as it is not "perfect") can be present resulting in a less efficient, but still unbiased estimate. The estimates will be less precise and highly sensitive to particular sets of data.[12] Multicollinearity can be detected from condition number or the variance inflation factor, among other tests.

Spherical errors

[edit]

The outer product of the error vector must be spherical.

This implies the error term has uniform variance (homoscedasticity) and no serial correlation.[13] If this assumption is violated, OLS is still unbiased, but inefficient. The term "spherical errors" will describe the multivariate normal distribution: if in the multivariate normal density, then the equation is the formula for a ball centered at μ with radius σ in n-dimensional space.[14]

Heteroskedasticity occurs when the amount of error is correlated with an independent variable. For example, in a regression on food expenditure and income, the error is correlated with income. Low income people generally spend a similar amount on food, while high income people may spend a very large amount or as little as low income people spend. Heteroskedastic can also be caused by changes in measurement practices. For example, as statistical offices improve their data, measurement error decreases, so the error term declines over time.

This assumption is violated when there is autocorrelation. Autocorrelation can be visualized on a data plot when a given observation is more likely to lie above a fitted line if adjacent observations also lie above the fitted regression line. Autocorrelation is common in time series data where a data series may experience "inertia." If a dependent variable takes a while to fully absorb a shock. Spatial autocorrelation can also occur geographic areas are likely to have similar errors. Autocorrelation may be the result of misspecification such as choosing the wrong functional form. In these cases, correcting the specification is one possible way to deal with autocorrelation.

When the spherical errors assumption may be violated, the generalized least squares estimator can be shown to be BLUE.[6]

See also

[edit]

Other unbiased statistics

[edit]

References

[edit]
  1. ^ See chapter 7 of Johnson, R.A.; Wichern, D.W. (2002). Applied multivariate statistical analysis. Vol. 5. Prentice hall.
  2. ^ Theil, Henri (1971). "Best Linear Unbiased Estimation and Prediction". Principles of Econometrics. New York: John Wiley & Sons. pp. 119–124. ISBN 0-471-85845-5.
  3. ^ Plackett, R. L. (1949). "A Historical Note on the Method of Least Squares". Biometrika. 36 (3/4): 458–460. doi:10.2307/2332682.
  4. ^ David, F. N.; Neyman, J. (1938). "Extension of the Markoff theorem on least squares". Statistical Research Memoirs. 2: 105–116. OCLC 4025782.
  5. ^ a b Aitken, A. C. (1935). "On Least Squares and Linear Combinations of Observations". Proceedings of the Royal Society of Edinburgh. 55: 42–48. doi:10.1017/S0370164600014346.
  6. ^ a b Huang, David S. (1970). Regression and Econometric Methods. New York: John Wiley & Sons. pp. 127–147. ISBN 0-471-41754-8.
  7. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. p. 13. ISBN 0-691-01018-8.
  8. ^ Walters, A. A. (1970). An Introduction to Econometrics. New York: W. W. Norton. p. 275. ISBN 0-393-09931-8.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. p. 7. ISBN 0-691-01018-8.
  10. ^ Johnston, John (1972). Econometric Methods (Second ed.). New York: McGraw-Hill. pp. 267–291. ISBN 0-07-032679-7.
  11. ^ Wooldridge, Jeffrey (2012). Introductory Econometrics (Fifth international ed.). South-Western. p. 220. ISBN 978-1-111-53439-4.
  12. ^ Johnston, John (1972). Econometric Methods (Second ed.). New York: McGraw-Hill. pp. 159–168. ISBN 0-07-032679-7.
  13. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. p. 10. ISBN 0-691-01018-8.
  14. ^ Ramanathan, Ramu (1993). "Nonspherical Disturbances". Statistical Methods in Econometrics. Academic Press. pp. 330–351. ISBN 0-12-576830-3.

Further reading

[edit]
[edit]
高考四百分左右能上什么学校 坚贞不渝是什么意思 白扁豆长什么样 b3是什么维生素 骨折线模糊什么意思
气短是什么感觉 腰疼吃什么药效果好 同好是什么意思 为什么会胸闷 纵容是什么意思
处女座男生喜欢什么样的女生 长颈鹿的脖子为什么那么长 hpv跟tct有什么区别 蛇酒不是三十九开什么 真谛是什么意思
对应是什么意思 头发不干就睡觉有什么危害 哈密瓜什么时候成熟 什么的东风填词语 慢性浅表性胃炎是什么意思
子宫肌瘤什么症状hcv9jop6ns2r.cn 解酒喝什么好sanhestory.com 吹风扇感冒了吃什么药hcv9jop1ns0r.cn 咳嗽发烧是什么原因hcv8jop8ns8r.cn 吃什么会导致流产hcv8jop3ns1r.cn
肯定是什么意思hcv9jop3ns7r.cn 被香灰烫了预示着什么hcv8jop5ns6r.cn 电商五行属什么hcv7jop4ns8r.cn 干什么挣钱快hcv9jop6ns9r.cn 六个月宝宝可以吃什么水果hcv9jop8ns1r.cn
社保卡是什么样的图片hcv8jop8ns1r.cn 剖腹产可以吃什么水果hcv9jop1ns1r.cn 宫腔内偏强回声是什么意思hcv8jop5ns7r.cn 交替是什么意思hcv9jop8ns2r.cn 闲鱼卖出的东西钱什么时候到账hcv7jop5ns2r.cn
廉航是什么意思hcv8jop0ns6r.cn 亚历山大王什么档次hcv8jop3ns1r.cn nad是什么hcv9jop7ns1r.cn 我们在干什么hcv9jop2ns8r.cn 窦性心律什么意思0735v.com
百度