青少年梦遗有什么危害| 结缔组织病是什么病能治愈吗| 芹菜炒什么| 香港买什么便宜| 六月26日是什么日子| 脑瘫是什么| 什么颜色加什么颜色等于绿色| 形容高兴的词语有什么| 巨蟹座跟什么星座最配| 2003属什么| 先父遗传是什么意思| 银耳为什么助湿气| 沈阳为什么叫盛京| 火麻仁是什么| 气短吃什么药| 天牛是什么| 葬花是什么意思| 左眼跳什么| 0r是什么意思| 1月1号什么星座| 心绞痛用什么药最好| 从此萧郎是路人是什么意思| 胆囊手术后不能吃什么| 梵高属于什么画派| 协警是干什么的| 紫色裤子配什么上衣| 脖子上长小肉疙瘩是什么原因| 什么东西可以代替阴茎| 扁桃体化脓吃什么药| 什么多腔| 熬夜吃什么保健品| 痛风不能吃什么东西| 布洛芬有什么作用| 五六月份是什么星座| 糖类抗原50是什么指标| 什么是肺炎| 讹人是什么意思| 阑尾炎应该挂什么科| 脸上突然长痣是什么原因| 水满则溢月盈则亏是什么意思| 吃雪燕有什么好处| 富翁是什么意思| 芊芊是什么颜色| 六六无穷是什么意思| 阴道有豆腐渣用什么药| 压差小是什么原因引起的| 乳腺b超挂什么科| 私生是什么意思| 久之的之是什么意思| 前戏是什么| 头发爱出油是什么原因| 俊五行属性是什么| 亚麻酸是什么东西| 蓬头垢面是什么意思| 九月一日是什么星座| 发烧喝什么水| 白花花的什么| 束脚裤配什么鞋子| 时过境迁是什么意思| 硬结灶是什么意思| 手脚浮肿是什么原因引起的| 玉兰油属于什么档次| 老师的老公叫什么| 面肌痉挛是什么原因引起的| 口腔溃疡为什么是白色的| 黄精什么人不能吃| 老感冒是什么原因| pcl是什么意思| 什么是二代身份证| 胎膜早破是什么意思| 1.16是什么星座| 晚上手脚发热是什么原因| 吃什么治拉肚子| 标准工资指什么| 什么是竖式计算| 莫须有是什么意思| 玫瑰的花语是什么| 脾虚湿重吃什么中成药| 五福临门是什么生肖| 肛周湿疹用什么药| 手上有湿疹是什么原因引起的| 虾皮不能和什么一起吃| 什么东西一吃就死| 承五行属性是什么| 什么原因引起静脉曲张| 牛肉和什么相克| 踩指压板有什么好处| 180是什么尺码| 新生儿囟门什么时候闭合| 支气管扩张吃什么药| 心疼是什么原因| 氟斑牙是什么原因造成的| 过会是什么意思| 女命正财代表什么| 飞蚊症是什么原因造成的能治愈吗| 检查痛风挂什么科| 此刻朋友这杯酒最珍贵是什么歌| 肝内囊性灶什么意思| 属鼠适合佩戴什么饰品| 98年一月属什么生肖| 老人生日送什么礼物好| 6月五行属什么| 大腿外侧麻木是什么原因| 多才多艺是什么生肖| 鼻子上火吃什么药| 莲子心和什么搭配泡水喝最好| 肚子为什么会胀气| 为什么容易中暑| 取环挂什么科室| 上午八点是什么时辰| 什么叫绿茶| 夏天手上长小水泡是什么原因| 用盐水洗脸有什么好处和坏处| 手机流量是什么| 西红柿拌白糖又叫什么| 溃烂用什么药治愈最快| 宝宝吐奶是什么原因引起的| 霍家为什么娶郭晶晶| 深圳市市长什么级别| 睡久了腰疼是什么原因| 郭字五行属什么| 肛周瘙痒是什么原因| 雷贝拉唑钠肠溶片什么时候吃| 芝士是什么东西| 宝宝拉肚子吃什么药好得快| 小年吃什么| 为什么会梦遗| 结膜炎什么症状| 蒙蔽是什么意思| 为什么来月经肚子疼| 点完痣要注意什么| 林俊杰属什么生肖| 胸部发炎是什么症状| 梦见蛇是什么意思啊| 信子是什么意思| 蔷薇色是什么颜色| 化疗与放疗有什么区别| 什么的小莲蓬| 喝完酒早上吃什么好| 结膜炎用什么眼药水效果好| 嘴唇一圈发黑是什么原因造成的| 射的快吃什么药| 前列腺炎是什么原因引起的| 势均力敌什么意思| 什么是妇科病| 6月26日是什么星座| 避孕套有什么牌子| 前庭是什么意思| 为什么不能送手表| 阔以是什么意思| 什么伤口需要打破伤风| 青青子衿什么意思| 半夜醒来睡不着是什么原因| 欣赏是什么意思| 双侧卵巢多囊性改变是什么意思| 咬肌疼是什么原因| 根茎叶属于什么器官| 日加华念什么| 吃什么不长胖| 血压高为什么| 蜗牛爱吃什么| 南京市长是什么级别| 吃什么生血快| 什么时候有雨| ppi下降意味着什么| 专场是什么意思| 素海参是什么做的| 人授和试管有什么区别| 今天是美国什么节日| 法王是什么意思| 吃什么容易滑胎流产| 性生活有什么好处| 催丹香是什么意思| 三伏天是什么意思| 知了什么时候叫| 发烧打冷颤是什么原因| 专注力是什么意思| 胃火旺吃什么药| 白切鸡用什么鸡做好吃| 面肌痉挛挂什么科| 什么叫女人味| 十一月是什么星座的啊| 西湖醋鱼是什么菜系| 甲状腺球蛋白抗体高说明什么| 四眼狗是什么品种| 梦见刨红薯是什么意思| 胀气吃什么药| 外阴炎是什么原因引起的| 黄体破裂是什么原因造成的| 胎儿为什么会喜欢臀位| 心是什么结构| 月季花是什么颜色的| 8月6号什么星座| 抗酸杆菌是什么意思| 女生喝什么茶好| 老年人腿肿是什么原因引起的| 大创是什么| 鱼香肉丝用什么肉做| 日加华念什么| 失眠是什么意思| 窦性心动过缓吃什么药| 牙医靠什么吃饭| jewelry什么意思| 一个h是什么牌子| spo2过低是什么意思| 射手座是什么星象| 阿莫西林有什么副作用| 女性尿液发黄是什么原因| 朝花夕拾什么意思| 脸上有红血丝是什么原因| 上火牙齿痛吃什么药| 滋阴润燥是什么意思| 德高望重是什么生肖| 幽门螺杆菌感染有什么症状| 陪葬是什么意思| 咳嗽白痰是什么原因| 吃菠萝有什么好处| 高氨血症是什么病| 铁蛋白高吃什么食物好| 乌云为什么是黑色的| 言字旁的字和什么有关| 国家专项是什么意思| gl是什么| 1979年是什么命| 鱼为什么睁着眼睛睡觉| 脂蛋白磷脂酶a2高说明什么| 总师是什么级别| 助产是干什么的| 周遭是什么意思| 郁是什么生肖| 菩提有什么寓意| 郁金香的花语是什么| 腿脚酸软无力是什么原因| 螃蟹跟什么不能一起吃| 九眼天珠是什么做的| 肝硬化失代偿期是什么意思| 发烧嗓子疼吃什么药好| 黄牛用的什么抢票软件| 披萨用什么面粉| 气滞血瘀吃什么药| 狮子属于什么科| 什么是跨域| 心跳快是什么原因| 接档是什么意思| 心脏疼是什么感觉| 不等闲是什么意思| 隔离霜有什么作用| 盆腔积液是什么意思| 鸡蛋和什么炒好吃| 你是我的楼兰是什么意思| 大腿外侧是什么经络| 腿弯疼是什么原因| 最近老坏东西暗示什么| 糖尿病早期什么症状| 魔芋粉是什么做的| 心脏问题挂什么科| 尿酸高能吃什么鱼| 吃杨梅有什么好处和功效| 双相是什么意思| 吃冰糖有什么好处和坏处| 氯化钠敷脸有什么作用| 睡不着是什么原因| 孩子上吐下泻吃什么药| 星期天为什么不叫星期七| 百度Jump to content

广州里的“非洲城市”全是黑人 被称为巧克力街

From Wikipedia, the free encyclopedia
百度 对症下药,个性化金融服务为企业经营助力实体经济是金融的根基。

In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a tool for understanding a series and predicting future values. AR involves regressing the variable on its own lagged (i.e., past) values. MA involves modeling the error as a linear combination of error terms occurring contemporaneously and at various times in the past. The model is usually denoted ARMA(p, q), where p is the order of AR and q is the order of MA.

The general ARMA model was described in the 1951 thesis of Peter Whittle, Hypothesis testing in time series analysis, and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins.

ARMA models can be estimated by using the Box–Jenkins method.

Mathematical formulation

[edit]

Autoregressive model

[edit]

The notation AR(p) refers to the autoregressive model of order p. The AR(p) model is written as

where are parameters and the random variable is white noise, usually independent and identically distributed (i.i.d.) normal random variables.[1][2]

In order for the model to remain stationary, the roots of its characteristic polynomial must lie outside the unit circle. For example, processes in the AR(1) model with are not stationary because the root of lies within the unit circle.[3]

The augmented Dickey–Fuller test can assesses the stability of an intrinsic mode function and trend components. For stationary time series, the ARMA models can be used, while for non-stationary series, Long short-term memory models can be used to derive abstract features. The final value is obtained by reconstructing the predicted outcomes of each time series.[citation needed]

Moving average model

[edit]

The notation MA(q) refers to the moving average model of order q:

where the are the parameters of the model, is the expectation of (often assumed to equal 0), and , ..., are i.i.d. white noise error terms that are commonly normal random variables.[4]

ARMA model

[edit]

The notation ARMA(p, q) refers to the model with p autoregressive terms and q moving-average terms. This model contains the AR(p) and MA(q) models,[5]

In terms of lag operator

[edit]

In some texts, the models is specified using the lag operator L. In these terms, the AR(p) model is given by

where represents the polynomial

The MA(q) model is given by

where represents the polynomial

Finally, the combined ARMA(p, q) model is given by

or more concisely,

or

This is the form used in Box, Jenkins & Reinsel.[6]

Moreover, starting summations from and setting and , then we get an even more elegant formulation:

Spectrum

[edit]

The spectral density of an ARMA process iswhere is the variance of the white noise, is the characteristic polynomial of the moving average part of the ARMA model, and is the characteristic polynomial of the autoregressive part of the ARMA model.[7][8]

Fitting models

[edit]

Choosing p and q

[edit]

An appropriate value of p in the ARMA(p, q) model can be found by plotting the partial autocorrelation functions. Similarly, q can be estimated by using the autocorrelation functions. Both p and q can be determined simultaneously using extended autocorrelation functions (EACF).[9] Further information can be gleaned by considering the same functions for the residuals of a model fitted with an initial selection of p and q.

Brockwell & Davis recommend using Akaike information criterion (AIC) for finding p and q.[10] Another option is the Bayesian information criterion (BIC).

Estimating coefficients

[edit]

After choosing p and q, ARMA models can be fitted by least squares regression to find the values of the parameters which minimize the error term. It is good practice to find the smallest values of p and q which provide an acceptable fit to the data. For a pure AR model, the Yule-Walker equations may be used to provide a fit.

ARMA outputs are used primarily to forecast (predict), and not to infer causation as in other areas of econometrics and regression methods such as OLS and 2SLS.

Software implementations

[edit]
  • In R, standard package stats has function arima, documented in ARIMA Modelling of Time Series. Package astsa has an improved script called sarima for fitting ARMA models (seasonal and nonseasonal) and sarima.sim to simulate data from these models. Extension packages contain related and extended functionality: package tseries includes the function arma(), documented in "Fit ARMA Models to Time Series"; packagefracdiff contains fracdiff() for fractionally integrated ARMA processes; and package forecast includes auto.arima for selecting a parsimonious set of p, q. The CRAN task view on Time Series contains links to most of these.
  • Mathematica has a complete library of time series functions including ARMA.[11]
  • MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.
  • Julia has community-driven packages that implement fitting with an ARMA model such as arma.jl.
  • Python has the statsmodelsS package which includes many models and functions for time series analysis, including ARMA. Formerly part of the scikit-learn library, it is now stand-alone and integrates well with Pandas.
  • PyFlux has a Python-based implementation of ARIMAX models, including Bayesian ARIMAX models.
  • IMSL Numerical Libraries are libraries of numerical analysis functionality including ARMA and ARIMA procedures implemented in standard programming languages like C, Java, C# .NET, and Fortran.
  • gretl can estimate ARMA models, as mentioned here
  • GNU Octave extra package octave-forge supports AR models.
  • Stata includes the function arima. for ARMA and ARIMA models.
  • SuanShu is a Java library of numerical methods that implements univariate/multivariate ARMA, ARIMA, ARMAX, etc models, documented in "SuanShu, a Java numerical and statistical library".
  • SAS has an econometric package, ETS, that estimates ARIMA models. See details.

History and interpretations

[edit]

The general ARMA model was described in the 1951 thesis of Peter Whittle, who used mathematical analysis (Laurent series and Fourier analysis) and statistical inference.[12][13] ARMA models were popularized by a 1970 book by George E. P. Box and Jenkins, who expounded an iterative (Box–Jenkins) method for choosing and estimating them. This method was useful for low-order polynomials (of degree three or less).[14]

ARMA is essentially an infinite impulse response filter applied to white noise, with some additional interpretation placed on it.

In digital signal processing, ARMA is represented as a digital filter with white noise at the input and the ARMA process at the output.

Applications

[edit]

ARMA is appropriate when a system is a function of a series of unobserved shocks (the MA or moving average part) as well as its own behavior. For example, stock prices may be shocked by fundamental information as well as exhibiting technical trending and mean-reversion effects due to market participants.[citation needed]

Generalizations

[edit]

There are various generalizations of ARMA. Nonlinear AR (NAR), nonlinear MA (NMA) and nonlinear ARMA (NARMA) model nonlinear dependence on past values and error terms. Vector AR (VAR) and vector ARMA (VARMA) model multivariate time series. Autoregressive integrated moving average (ARIMA) models non-stationary time series (that is, whose mean changes over time). Autoregressive conditional heteroskedasticity (ARCH) models time series where the variance changes. Seasonal ARIMA (SARIMA or periodic ARMA) models periodic variation. Autoregressive fractionally integrated moving average (ARFIMA, or Fractional ARIMA, FARIMA) model time-series that exhibits long memory. Multiscale AR (MAR) is indexed by the nodes of a tree instead of integers.

Autoregressive–moving-average model with exogenous inputs (ARMAX)

[edit]

The notation ARMAX(p, q, b) refers to a model with p autoregressive terms, q moving average terms and b exogenous inputs terms. The last term is a linear combination of the last b terms of a known and external time series . It is given by:

where are the parameters of the exogenous input .

Some nonlinear variants of models with exogenous variables have been defined: see for example Nonlinear autoregressive exogenous model.

Statistical packages implement the ARMAX model through the use of "exogenous" (that is, independent) variables. Care must be taken when interpreting the output of those packages, because the estimated parameters usually (for example, in R[15] and gretl) refer to the regression:

where incorporates all exogenous (or independent) variables:

See also

[edit]

References

[edit]
  1. ^ Box, George E. P. (1994). Time series analysis : forecasting and control. Gwilym M. Jenkins, Gregory C. Reinsel (3rd ed.). Englewood Cliffs, N.J.: Prentice Hall. p. 54. ISBN 0-13-060774-6. OCLC 28888762.
  2. ^ Shumway, Robert H. (2000). Time series analysis and its applications. David S. Stoffer. New York: Springer. pp. 90–91. ISBN 0-387-98950-1. OCLC 42392178.
  3. ^ Box, George E. P.; Jenkins, Gwilym M.; Reinsel, Gregory C. (1994). Time series analysis : forecasting and control (3rd ed.). Englewood Cliffs, N.J.: Prentice Hall. pp. 54–55. ISBN 0-13-060774-6. OCLC 28888762.
  4. ^ Box, George E. P.; Jenkins, Gwilym M.; Reinsel, Gregory C.; Ljung, Greta M. (2016). Time series analysis : forecasting and control (5th ed.). Hoboken, New Jersey: John Wiley & Sons, Incorporated. p. 53. ISBN 978-1-118-67492-5. OCLC 908107438.
  5. ^ Shumway, Robert H. (2000). Time series analysis and its applications. David S. Stoffer. New York: Springer. p. 98. ISBN 0-387-98950-1. OCLC 42392178.
  6. ^ Box, George; Jenkins, Gwilym M.; Reinsel, Gregory C. (1994). Time Series Analysis: Forecasting and Control (Third ed.). Prentice-Hall. ISBN 0130607746.
  7. ^ Rosenblatt, Murray (2000). Gaussian and non-Gaussian linear time series and random fields. New York: Springer. p. 10. ISBN 0-387-98917-X. OCLC 42061096.
  8. ^ Wei, William W. S. (1990). Time series analysis : univariate and multivariate methods. Redwood City, Calif.: Addison-Wesley Pub. pp. 242–243. ISBN 0-201-15911-2. OCLC 18166355.
  9. ^ Missouri State University. "Model Specification, Time Series Analysis" (PDF).
  10. ^ Brockwell, P. J.; Davis, R. A. (2009). Time Series: Theory and Methods (2nd ed.). New York: Springer. p. 273. ISBN 9781441903198.
  11. ^ Time series features in Mathematica Archived November 24, 2011, at the Wayback Machine
  12. ^ Hannan, Edward James (1970). Multiple time series. Wiley series in probability and mathematical statistics. New York: John Wiley and Sons.
  13. ^ Whittle, P. (1951). Hypothesis Testing in Time Series Analysis. Almquist and Wicksell. Whittle, P. (1963). Prediction and Regulation. English Universities Press. ISBN 0-8166-1147-5. {{cite book}}: ISBN / Date incompatibility (help)
    Republished as: Whittle, P. (1983). Prediction and Regulation by Linear Least-Square Methods. University of Minnesota Press. ISBN 0-8166-1148-3.
  14. ^ Hannan & Deistler (1988, p. 227): Hannan, E. J.; Deistler, Manfred (1988). Statistical theory of linear systems. Wiley series in probability and mathematical statistics. New York: John Wiley and Sons.
  15. ^ ARIMA Modelling of Time Series, R documentation

Further reading

[edit]
尿盐结晶是什么意思 什么病不能吃竹笋 鳄鱼属于什么动物 纠缠什么意思 依依不舍的依依是什么意思
看什么看 中途疲软吃什么药 做梦梦见考试是什么意思 比干是什么神 梦见打老虎是什么预兆
腋下有异味是什么原因 冢字的意思是什么 蛇为什么怕鹅 胃烧心是什么症状 高血压的人不能吃什么
佟丽娅什么民族 路亚竿什么品牌好 公安局局长是什么级别 拉肚子拉水吃什么药 73年属什么的
血压低头晕吃什么药hcv9jop7ns1r.cn 吃什么对肺有好处hcv8jop8ns7r.cn 11月30是什么星座hcv8jop5ns8r.cn 疤痕增生是什么hcv9jop1ns4r.cn 4月30号是什么星座hcv7jop7ns3r.cn
急性腮腺炎吃什么药jasonfriends.com 痣是什么hcv8jop0ns6r.cn 榴莲苦是什么原因hcv7jop5ns6r.cn 世界上最多笔画的字是什么字hcv9jop6ns3r.cn 外阴瘙痒用什么hcv8jop8ns1r.cn
什么情况hcv9jop3ns9r.cn 梦到孩子被蛇咬是什么意思hcv9jop0ns9r.cn 去三亚穿什么衣服合适bysq.com 乘风破浪是什么意思wuhaiwuya.com 小马过河的故事告诉我们什么道理gangsutong.com
血脂高吃什么水果最好hcv8jop5ns1r.cn 桃胶有什么作用xjhesheng.com 农历闰月有什么规律hcv9jop1ns8r.cn 减肥不能吃什么hcv9jop6ns6r.cn 四月份是什么星座hcv7jop7ns4r.cn
百度