吃什么对脾胃有好处| 斑秃去医院挂什么科| 人的牙齿为什么不能再生| 宫腔积液和盆腔积液有什么区别| loves是什么意思| 梦到捉鱼是什么意思| dsa检查是什么| 左侧肋骨疼是什么原因| 头发沙发是什么意思| 肾和性功能有什么关系| 男女授受不亲是什么意思| 蜈蚣属于什么类动物| 逆熵是什么意思| 15号是什么日子| 流清鼻涕吃什么药| 小孩测骨龄挂什么科| 授教什么意思| 总是拉稀是什么原因| 昱这个字念什么| 腿麻是什么原因引起的| 脾胃不好吃什么水果| 阴道炎要用什么药| 金价下跌意味着什么| 什么茶| 八字伏吟是什么意思| 子什么意思| 韩信点兵什么意思| 一竖一点念什么| lee属于什么档次| 为什么生理期不能做| 尿白细胞阳性什么意思| 暮光是什么意思| 商品下架是什么意思| 心脏肿大是什么原因| 脾切除后有什么影响| 什么叫生僻字| 今天什么生肖冲什么生肖| 怀孕小肚子疼是什么原因| 小青柑属于什么茶| 淀粉样变是什么病| 金银花有什么作用| 王八看绿豆是什么意思| 八月份什么星座| 额头青筋凸起是什么原因| 胃息肉是什么原因造成的| 深海鱼油起什么作用| 肝阳上亢是什么意思| 硒酵母胶囊对甲状腺的作用是什么| 老人喝什么牛奶好| 什么叫肾阴虚| 卵泡期是什么意思| 刮宫和流产有什么区别| 道士是什么生肖| 上面日下面立读什么| 更年期什么时候| 结扎对男人有什么伤害| 胎盘位于子宫前壁是什么意思| dm是什么病| 肝红素高是什么原因| 牙齿发炎吃什么消炎药| leu是什么氨基酸| 幽门螺杆菌阴性是什么意思| 62年的虎是什么命| 仓鼠吃什么食物| 上什么环最好最安全伤害小| 什么东西最补心脏| g1是什么意思| 什么叫世家| 1943年属什么| 排卵期为什么会出血| 葫芦为什么会苦| 身上长红痘痘是什么原因| 鹅蛋有什么营养| 早起的鸟儿有虫吃是什么意思| ppd是什么| 风寒感冒吃什么水果| 陀飞轮是什么意思| 茄子和什么不能一起吃| 高姓和什么姓是世仇| 什么情况吃通宣理肺丸| 一个提手一个京念什么| 五光十色是什么意思| 太上老君的坐骑是什么| 尿酸高是什么症状| 免疫系统由什么组成| 中风是什么| 男人都是大猪蹄子是什么意思| 高锰酸钾是什么东西| 一串什么| 什么发什么颜| 为什么会长痘痘| 脱落细胞学检查是什么| 什么时候绝经| 用进废退什么意思| 支气管哮喘吃什么药| 因祸得福是什么意思| 什么东西补气血| 女性分泌物带血是什么原因| 玻璃水是什么| 流鼻血吃什么药效果好| 治疗白斑最有效的方法是什么| 慢性胃炎伴胆汁反流是什么意思| 附件炎用什么药最好| 爆竹声中一岁除下一句是什么| 医院红色手环代表什么| 吃什么东西对肝脏好| 什么面| 小孩晚上睡觉流口水是什么原因| 八月十五是什么日子| 支原体感染咳嗽吃什么药| 胃充盈欠佳是什么意思| 去三亚需要什么证件| 柿子不能和什么一起吃| 梦见新坟墓是什么预兆| c肽高说明什么| 卧轨什么意思| 凉粉果什么时候成熟| 胃胀气吃什么| 安抚奶嘴什么时候戒掉| 蒋字五行属什么| 长期手淫有什么危害| 心病科主要看什么病| 粘膜慢性炎是什么病| 呲牙是什么意思| 酒花是什么| 胃在什么地方| 检查乳腺做什么检查| recipe什么意思| 脖子疼是什么原因| 金钱龟吃什么食物| 桂子是什么意思| 白羊座和什么星座最配| 保底和底薪有什么区别| 属虎五行属什么| 十一月二十六是什么星座| 老鼠屎长什么样子| 柿子不能和什么一起吃| 鹅口疮是什么原因引起的| 水对什么| 公交车是什么意思| 治字五行属什么| kappa是什么意思| jackjones是什么品牌| 什么能增强免疫力| hpv有什么症状吗| 女人梦见血是什么预兆| ct什么意思| 宝宝拉黑色大便是什么原因| 三七长什么样子图片| 斜视是什么症状| 什么洗衣液是中性的| 尿道刺痛吃什么药| 红烧肉炖什么菜最好吃| 吃南瓜有什么好处和坏处| 腰肌劳损有什么症状| 双子女和什么座最配对| 切片是什么意思| 中国的国球是什么球| 明目退翳什么意思| 干眼症有什么症状| 窦性心律过速是什么意思| 嘴唇干裂脱皮是什么原因| 喜乐是什么意思| 骨痂形成是什么意思| 鸡肉和什么相克| 平板撑有什么作用| 流鼻血吃什么药| acl医学上是什么意思| 舌头上有黑苔是什么原因| 什么的青年| 甲状腺是挂什么科| 瞳孔放大意味着什么| 衡字五行属什么| 四时是什么意思| 龙骨是什么动物的骨头| 佳偶天成什么意思| 岩茶属于什么茶| 两班倒是什么意思| 喝什么可以解酒| 黄原胶是什么| 舌苔白腻吃什么药| 异常什么意思| 幽门螺旋杆菌是什么病| 头昏和头晕有什么区别| 信佛有什么好处| 去医院看肛门挂什么科| 松子吃多了有什么害处| 治类风湿用什么方法好| 灵芝主要治什么病| 推拿和按摩有什么区别| 丑时是什么时间| 吃什么能降低尿蛋白| 打嗝不停是什么原因| 幽会是什么意思| 天蝎是什么象星座| 欺骗餐是什么意思| 什么原因导致打嗝| 什么是县级市| cta是什么意思| 哈喇味是什么味道| 改年龄需要什么手续| 藿香泡水喝有什么好处| 伤口不容易愈合是什么原因| 慰安妇是什么| 为什么一到晚上就痒| 痔疮是什么原因引起的| 气机是什么意思| 寒食节是什么时候| 头晕是什么原因| 蟑螂的天敌是什么| 五十坐地能吸土是什么意思| kfc是什么| 尿蛋白十1是什么意思| 预测是什么意思| agoni什么意思| 牛油果不能和什么一起吃| 1026什么星座| 寄生虫长什么样| 血小板是什么颜色的| 1450是什么意思| 蜜糖有什么功效和作用| 12年义务教育什么时候实行| 醋酸氯已定是什么药| 崩大碗配什么煲汤最好| 什么药治便秘效果最好最快| 什么是烂尾楼| 罗非鱼长什么样| 2037年是什么年| 什么是甘油| 3月19是什么星座| cpu是什么意思| br是什么意思| 清炖羊肉放什么调料| 数字2代表什么意思| 2.21是什么星座| 喝酒容易醉是什么原因| cpm是什么意思| 紫外线是什么| 莲白是什么菜| 学历证是什么| 白带异常是什么原因| 幽门螺旋杆菌的症状吃什么药| 花絮是什么意思| 射手座女和什么星座最配| 指征是什么意思| 40岁男人学什么乐器好| 顾影自怜什么意思| 莲子有什么作用| 8月31日什么星座| 梦见病人好了什么预兆| 宫外孕和宫内孕有什么区别| 什么是富氢水| 左腿酸痛是什么原因| 考生号是什么| 什么是安全| 小孩咳嗽吃什么药效果最好| crf是什么意思| 尿液很黄是什么原因| 女性下面长什么样| 叶公好龙的寓意是什么| 04属什么生肖| 交接是什么意思| 头上两个旋代表什么| 肌酸粉有什么作用| 百度Jump to content

特斯拉百万元Model X报废 司机不幸遇难

From Wikipedia, the free encyclopedia
百度 我的存在没有任何价值。

Chi-squared distribution, showing χ2 on the first axis and p-value (right tail probability) on the second axis.

A chi-squared test (also chi-square or χ2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables (two dimensions of the contingency table) are independent in influencing the test statistic (values within the table).[1] The test is valid when the test statistic is chi-squared distributed under the null hypothesis, specifically Pearson's chi-squared test and variants thereof. Pearson's chi-squared test is used to determine whether there is a statistically significant difference between the expected frequencies and the observed frequencies in one or more categories of a contingency table. For contingency tables with smaller sample sizes, a Fisher's exact test is used instead.

In the standard applications of this test, the observations are classified into mutually exclusive classes. If the null hypothesis that there are no differences between the classes in the population is true, the test statistic computed from the observations follows a χ2 frequency distribution. The purpose of the test is to evaluate how likely the observed frequencies would be assuming the null hypothesis is true.

Test statistics that follow a χ2 distribution occur when the observations are independent. There are also χ2 tests for testing the null hypothesis of independence of a pair of random variables based on observations of the pairs.

Chi-squared tests often refers to tests for which the distribution of the test statistic approaches the χ2 distribution asymptotically, meaning that the sampling distribution (if the null hypothesis is true) of the test statistic approximates a chi-squared distribution more and more closely as sample sizes increase.

History

[edit]

In the 19th century, statistical analytical methods were mainly applied in biological data analysis and it was customary for researchers to assume that observations followed a normal distribution, such as Sir George Airy and Mansfield Merriman, whose works were criticized by Karl Pearson in his 1900 paper.[2]

At the end of the 19th century, Pearson noticed the existence of significant skewness within some biological observations. In order to model the observations regardless of being normal or skewed, Pearson, in a series of articles published from 1893 to 1916,[3][4][5][6] devised the Pearson distribution, a family of continuous probability distributions, which includes the normal distribution and many skewed distributions, and proposed a method of statistical analysis consisting of using the Pearson distribution to model the observation and performing a test of goodness of fit to determine how well the model really fits to the observations.

Pearson's chi-squared test

[edit]

In 1900, Pearson published a paper[2] on the χ2 test which is considered to be one of the foundations of modern statistics.[7] In this paper, Pearson investigated a test of goodness of fit.

Suppose that n observations in a random sample from a population are classified into k mutually exclusive classes with respective observed numbers of observations xi (for i = 1,2,…,k), and a null hypothesis gives the probability pi that an observation falls into the ith class. So we have the expected numbers mi = npi for all i, where

Pearson proposed that, under the circumstance of the null hypothesis being correct, as n → ∞ the limiting distribution of the quantity given below is the χ2 distribution.

Pearson dealt first with the case in which the expected numbers mi are large enough known numbers in all cells assuming every observation xi may be taken as normally distributed, and reached the result that, in the limit as n becomes large, X2 follows the χ2 distribution with k ? 1 degrees of freedom.

However, Pearson next considered the case in which the expected numbers depended on the parameters that had to be estimated from the sample, and suggested that, with the notation of mi being the true expected numbers and mi being the estimated expected numbers, the difference

will usually be positive and small enough to be omitted. In a conclusion, Pearson argued that if we regarded X2 as also distributed as χ2 distribution with k ? 1 degrees of freedom, the error in this approximation would not affect practical decisions. This conclusion caused some controversy in practical applications and was not settled for 20 years until Fisher's 1922 and 1924 papers.[8][9]

Other examples of chi-squared tests

[edit]

One test statistic that follows a chi-squared distribution exactly is the test that the variance of a normally distributed population has a given value based on a sample variance. Such tests are uncommon in practice because the true variance of the population is usually unknown. However, there are several statistical tests where the chi-squared distribution is approximately valid:

Fisher's exact test

[edit]

For an exact test used in place of the 2 × 2 chi-squared test for independence when all the row and column totals were fixed by design, see Fisher's exact test. When the row or column margins (or both) are random variables (as in most common research designs) this tends to be overly conservative and underpowered.[10]

Binomial test

[edit]

For an exact test used in place of the 2 × 1 chi-squared test for goodness of fit, see binomial test.

Other chi-squared tests

[edit]

Yates's correction for continuity

[edit]

Using the chi-squared distribution to interpret Pearson's chi-squared statistic requires one to assume that the discrete probability of observed binomial frequencies in the table can be approximated by the continuous chi-squared distribution. This assumption is not quite correct and introduces some error.

To reduce the error in approximation, Frank Yates suggested a correction for continuity that adjusts the formula for Pearson's chi-squared test by subtracting 0.5 from the absolute difference between each observed value and its expected value in a 2 × 2 contingency table.[11] This reduces the chi-squared value obtained and thus increases its p-value.

Chi-squared test for variance in a normal population

[edit]

If a sample of size n is taken from a population having a normal distribution, then there is a result (see distribution of the sample variance) which allows a test to be made of whether the variance of the population has a pre-determined value. For example, a manufacturing process might have been in stable condition for a long period, allowing a value for the variance to be determined essentially without error. Suppose that a variant of the process is being tested, giving rise to a small sample of n product items whose variation is to be tested. The test statistic T in this instance could be set to be the sum of squares about the sample mean, divided by the nominal value for the variance (i.e. the value to be tested as holding). Then T has a chi-squared distribution with n ? 1 degrees of freedom. For example, if the sample size is 21, the acceptance region for T with a significance level of 5% is between 9.59 and 34.17.

Example chi-squared test for categorical data

[edit]

Suppose there is a city of 1,000,000 residents with four neighborhoods: A, B, C, and D. A random sample of 650 residents of the city is taken and their occupation is recorded as "white collar", "blue collar", or "no collar". The null hypothesis is that each person's neighborhood of residence is independent of the person's occupational classification. The data are tabulated as:

A B C D Total
White collar 90 60 104 95 349
Blue collar 30 50 51 20 151
No collar 30 40 45 35 150
Total 150 150 200 150 650

Let us take the sample living in neighborhood A, 150, to estimate what proportion of the whole 1,000,000 live in neighborhood A. Similarly we take ?349/650? to estimate what proportion of the 1,000,000 are white-collar workers. By the assumption of independence under the hypothesis we should "expect" the number of white-collar workers in neighborhood A to be

Then in that "cell" of the table, we have

The sum of these quantities over all of the cells is the test statistic; in this case, . Under the null hypothesis, this sum has approximately a chi-squared distribution whose number of degrees of freedom is

If the test statistic is improbably large according to that chi-squared distribution, then one rejects the null hypothesis of independence.

A related issue is a test of homogeneity. Suppose that instead of giving every resident of each of the four neighborhoods an equal chance of inclusion in the sample, we decide in advance how many residents of each neighborhood to include. Then each resident has the same chance of being chosen as do all residents of the same neighborhood, but residents of different neighborhoods would have different probabilities of being chosen if the four sample sizes are not proportional to the populations of the four neighborhoods. In such a case, we would be testing "homogeneity" rather than "independence". The question is whether the proportions of blue-collar, white-collar, and no-collar workers in the four neighborhoods are the same. However, the test is done in the same way.

Applications

[edit]

In cryptanalysis, the chi-squared test is used to compare the distribution of plaintext and (possibly) decrypted ciphertext. The lowest value of the test means that the decryption was successful with high probability.[12][13] This method can be generalized for solving modern cryptographic problems.[14]

In bioinformatics, the chi-squared test is used to compare the distribution of certain properties of genes (e.g., genomic content, mutation rate, interaction network clustering, etc.) belonging to different categories (e.g., disease genes, essential genes, genes on a certain chromosome etc.).[15][16]

See also

[edit]

References

[edit]
  1. ^ "Chi-Square - Sociology 3112 - Department of Sociology - The University of utah". soc.utah.edu. Retrieved 2025-08-06.
  2. ^ a b Pearson, Karl (1900). "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". Philosophical Magazine. Series 5. 50 (302): 157–175. doi:10.1080/14786440009463897.
  3. ^ Pearson, Karl (1893). "Contributions to the mathematical theory of evolution [abstract]". Proceedings of the Royal Society. 54: 329–333. doi:10.1098/rspl.1893.0079. JSTOR 115538.
  4. ^ Pearson, Karl (1895). "Contributions to the mathematical theory of evolution, II: Skew variation in homogeneous material". Philosophical Transactions of the Royal Society. 186: 343–414. Bibcode:1895RSPTA.186..343P. doi:10.1098/rsta.1895.0010. JSTOR 90649.
  5. ^ Pearson, Karl (1901). "Mathematical contributions to the theory of evolution, X: Supplement to a memoir on skew variation". Philosophical Transactions of the Royal Society A. 197 (287–299): 443–459. Bibcode:1901RSPTA.197..443P. doi:10.1098/rsta.1901.0023. JSTOR 90841.
  6. ^ Pearson, Karl (1916). "Mathematical contributions to the theory of evolution, XIX: Second supplement to a memoir on skew variation". Philosophical Transactions of the Royal Society A. 216 (538–548): 429–457. Bibcode:1916RSPTA.216..429P. doi:10.1098/rsta.1916.0009. JSTOR 91092.
  7. ^ Cochran, William G. (1952). "The Chi-square Test of Goodness of Fit". The Annals of Mathematical Statistics. 23 (3): 315–345. doi:10.1214/aoms/1177729380. JSTOR 2236678.
  8. ^ Fisher, Ronald A. (1922). "On the Interpretation of χ2 from Contingency Tables, and the Calculation of P". Journal of the Royal Statistical Society. 85 (1): 87–94. doi:10.2307/2340521. JSTOR 2340521.
  9. ^ Fisher, Ronald A. (1924). "The Conditions Under Which χ2 Measures the Discrepancey Between Observation and Hypothesis". Journal of the Royal Statistical Society. 87 (3): 442–450. JSTOR 2341149.
  10. ^ Campbell, Ian (2025-08-06). "Chi-squared and Fisher–Irwin tests of two-by-two tables with small sample recommendations". Statistics in Medicine. 26 (19): 3661–3675. doi:10.1002/sim.2832. ISSN 0277-6715. PMID 17315184.
  11. ^ Yates, Frank (1934). "Contingency table involving small numbers and the χ2 test". Supplement to the Journal of the Royal Statistical Society. 1 (2): 217–235. doi:10.2307/2983604. JSTOR 2983604.
  12. ^ "Chi-squared Statistic". Practical Cryptography. Archived from the original on 18 February 2015. Retrieved 18 February 2015.
  13. ^ "Using Chi Squared to Crack Codes". IB Maths Resources. British International School Phuket. 15 June 2014.
  14. ^ Ryabko, B. Ya.; Stognienko, V. S.; Shokin, Yu. I. (2004). "A new test for randomness and its application to some cryptographic problems" (PDF). Journal of Statistical Planning and Inference. 123 (2): 365–376. doi:10.1016/s0378-3758(03)00149-6. Retrieved 18 February 2015.
  15. ^ Feldman, I.; Rzhetsky, A.; Vitkup, D. (2008). "Network properties of genes harboring inherited disease mutations". PNAS. 105 (11): 4323–432. Bibcode:2008PNAS..105.4323F. doi:10.1073/pnas.0701722105. PMC 2393821. PMID 18326631.
  16. ^ "chi-square-tests" (PDF). Archived from the original (PDF) on 29 June 2018. Retrieved 29 June 2018.

Further reading

[edit]
黄骨鱼是什么鱼 近视眼镜是什么镜 吞拿鱼是什么鱼 冷感冒吃什么药 梦见穿山甲预示着什么
伤口撒什么药粉好得快 纸老虎是什么意思 一唱一和是什么生肖 孩子嗓子有痰吃什么药 儿童发烧吃什么药
6月17号是什么星座 被蜜蜂蛰了擦什么药 丑时属什么 二婚是什么意思 冠脉钙化是什么意思
腺肌症是什么意思 药物过敏用什么药 茶水洗脸有什么好处和坏处 补气血吃什么 做梦踩到屎是什么意思
师五行属什么hcv8jop0ns1r.cn 竹节棉是什么面料hcv8jop6ns6r.cn 吃什么水果补血hcv9jop1ns9r.cn 牛黄安宫丸什么时候吃最好hcv9jop5ns4r.cn 什么叫庚日hcv8jop7ns0r.cn
膀胱炎挂什么科wuhaiwuya.com 马牛羊鸡犬豕中的豕指的是什么hcv8jop6ns9r.cn 梦到鹦鹉预示着什么hcv8jop9ns4r.cn 彩虹为什么有七种颜色hcv8jop8ns7r.cn 香榧是什么hcv8jop8ns2r.cn
4月19是什么星座hcv7jop9ns8r.cn 改善是什么意思hcv8jop9ns4r.cn 不眠之夜是什么意思hanqikai.com 维生素b12有什么用hcv9jop0ns0r.cn 什么是三位一体hcv7jop6ns2r.cn
偷换概念是什么意思hcv9jop7ns1r.cn a1微球蛋白偏高说明什么意思hcv9jop2ns5r.cn 小登科是什么意思hcv8jop6ns6r.cn caring什么意思96micro.com 卡地亚手表什么档次hcv8jop8ns4r.cn
百度