结婚婚检都检查什么项目| 盐水洗脸有什么好处与坏处| 阴虚血热什么症状| 画作是什么意思| 囊肿是什么| 肝做什么检查最准确| 鸭屎香为什么叫鸭屎香| 鸡腿炖什么好吃| 廿是什么意思| 喝酒拉肚子是什么原因| 屁多还臭是什么原因| 夫妻分房睡意味着什么| 微凉是什么意思| 凯莉包是什么牌子| 齿痕舌吃什么中成药| 射手女喜欢什么样的男生| 自在什么意思| 精神可嘉是什么意思| 上四休二是什么意思| 什么是碳足迹| 猫咪吐黄水有泡沫没有精神吃什么药| 什么动物站着睡觉| 肠息肉有什么症状| 小狗能吃什么水果| 晨起口干口苦是什么原因| 不完全性右束支传导阻滞是什么意思| 吃止痛药有什么副作用| 为什么打雷闪电| 翘首企盼是什么意思| 深水炸弹什么意思| 蓝眼泪是什么意思| 安属于五行属什么| 苹果浓缩汁是什么| 尿很黄是什么原因| 该说不说的是什么意思| 女人怀孕的最佳时间是什么时间| 身份证尾号代表什么| 10度左右穿什么衣服合适| 孕早期不能吃什么食物| 什么的树影| 为什么长疣| gas什么意思| 为什么会胃胀气| 碘伏过敏是什么症状| 什么是手卫生| 骤雨落宿命敲什么意思| 胃窦炎是什么症状| 剁椒能做什么菜| 皇帝为什么自称朕| 胃酸反流是什么原因| 第三产业是什么| 吸烟人吃什么清肺最快| 磨破皮了涂什么药| 喝什么提神| 102是什么意思| 室性期前收缩是什么意思| 灰飞烟灭是什么意思| 黄芪长什么样子| 金字旁加巨念什么| 有什么小说| 天麻有什么作用与功效| 人为什么会哭| 西凤酒什么香型| 准生证什么时候办| 肺结节是什么病| 相对密度是什么意思| 什么人不能吃马齿苋| choker什么意思| 宇宙的外面是什么| 心肌供血不足是什么原因造成的| 十二月十二日是什么星座| 眉头下方有痣代表什么| 世事无常是什么意思| 毛囊炎是什么症状图片| 7月24日是什么日子| 胸透是什么| 什么是纤维化| 齿痕舌是什么原因| 1994属什么| 总是嗳气是什么原因| 徒劳无功是什么意思| lancome是什么牌子的| 梦见吃李子是什么意思| 抗凝药是什么意思| 唔什么意思| 李什么名字好听| 达字五行属什么| 尿隐血阳性是什么意思| 吃什么愈合伤口恢复最快| 阴道壁是什么样的| 什么是达人| 因祸得福是什么意思| 胖大海是什么| 经期上火了吃什么降火| 咖啡烘培度有什么区别| pcm是什么意思| 给老师送花送什么花合适| 气川读什么| 尿素氮高吃什么药| 水银中毒会出现什么状况| 胡萝卜不能和什么一起吃| sey什么意思| 红枣泡水喝有什么好处| 什么叫十二指肠球炎| 伏特加是什么| 一个月一个非念什么| 怀孕孕酮低吃什么补得快| 什么叫智商| 喝茶是什么意思| 瘦人吃什么长胖| 庆大霉素治疗鱼什么病| 咖啡豆是什么动物粪便| 甲状腺阳性是什么意思| 血脂高吃什么能降下来| mfd是什么意思| 三月底是什么星座| 手心干燥是什么原因| 开什么节什么的成语| 什么什么大什么| 西贝是什么| 1939年属什么| 肚脐眼左右两边疼是什么原因| 宝宝反复发烧是什么原因引起的| 黄风怪是什么动物| 慢脚是什么| 色泽是什么意思| 拉血挂什么科| 夏天种什么水果| 男女授受不亲是什么意思| 玉米水喝了有什么好处| 思伤脾是什么意思| 肚子胀不消化吃什么药| 掉头发严重吃什么东西可以改善| 吃什么补肾益精| 林伽是什么| 秋天有什么特点| 人咬人有什么危害| 甲胎蛋白是什么| 充电宝什么品牌最好| 失眠缺什么维生素| 巨蟹是什么象星座| 喝水喝多了有什么坏处| 三叉神经痛有什么症状| 中规中矩是什么意思| 雪茄是什么| 荟字五行属什么| 检查脑袋应该挂什么科| 山芋是什么| 阴阳调和是什么意思| 痰浊是什么意思| 胃腺息肉什么意思| 五个月宝宝可以吃什么水果| 燊读什么| 颈椎钙化是什么意思严重么| johnny什么意思| 省军区司令员是什么级别| 治霉菌性阴炎用什么药好得快| 大拇指疼痛什么原因引起的| 吸烟有什么好处| wpw综合症是什么意思| 乙肝125阳性是什么意思| 脚趾麻是什么病的前兆| 白细胞酯酶弱阳性是什么意思| 肾结水是什么原因造成的| 米肠是什么做的| 什么样的星星| 何炅的老婆叫什么名字| 明年什么生肖| 什么颜色加什么颜色等于黑色| 经期吃什么让血量增加| 中元节应该说什么| 家庭烧烤准备什么食材| 四个口是什么字| 萧何字什么| mchc是什么意思| 12月31号什么星座| spiderking是什么牌子| 脚麻木是什么原因| 2017属什么生肖| 高血压适合做什么运动| 什么的羊圈| 什么叫空调病| 牛腩是什么| 11.16是什么星座| 牙龈发炎用什么药| 海带与什么食物相克| 为什么会阳痿| 湿疹是什么意思| 四两棉花歇后语是什么| 粘米粉是什么米做的| 车厘子与樱桃有什么区别| 排骨是什么肉| 喉咙有烧灼感吃什么药| 逝者如斯夫什么意思| 红茶适合什么季节喝| 藏蓝色是什么颜色| 瑗字五行属什么| 北芪与黄芪有什么区别| trust什么意思| 刺激什么意思| 玉屏风颗粒主治什么| 脚底板痛挂什么科| anna是什么意思| 什么情况下怀疑白血病| 1962年属虎的是什么命| 神经痛吃什么药效果好| pic什么意思| 秋天穿什么衣服| 血管检查是做什么检查| 小康生活的标准是什么| 属猴的幸运色是什么颜色| 想成为什么样的人| 肺与什么相表里| 成都立冬吃什么| 覆水难收是什么意思| parzin眼镜是什么牌子| 校正是什么意思| 嘴酸是什么原因引起| 江西是什么菜系| 洗澡有什么好处| 巨蟹和什么星座最配| 牛肉和什么菜炒好吃| 血脂高吃什么食物| 唐伯虎是什么生肖| 老年人适合吃什么水果| 提高免疫力吃什么| 甲胎蛋白偏高是什么原因| 世界什么名| 骨折忌口什么食物| 龙和什么相冲| 连续打喷嚏是什么原因| 郑中基为什么叫太子基| 亚米是什么意思| 总胆红素高是什么病| 阴吹是什么| 肚脐周围痛是什么原因| 结婚十年是什么婚| 玮字五行属什么| 轻度高血压吃什么食物可以降压| 人身体缺钾是什么症状| 孕晚期流鼻血是什么原因| 小姐的全套都有什么| 高血压吃什么药好| 10月31日什么星座| 张嘴睡觉是什么原因| 公园里有什么有什么还有什么| 梦见洗澡是什么意思| 供是什么意思| 皮肤过敏不能吃什么| 晶莹的意思是什么| 晚上猫叫有什么预兆| 万花筒是什么| 痞块是什么意思| 脚冰凉吃什么药| 农历闰月有什么规律| 小孩割包皮挂什么科| 浆水是什么| 寅虎是什么意思| 百鸟归巢什么意思| 阴枣是什么| aki医学上是什么意思| uhd是什么意思| 单亲是什么意思| 向日葵是什么季节| 百度Jump to content

河南上蔡交通局执法所突击联合夜查超限超载车

From Wikipedia, the free encyclopedia
Internet history timeline
百度 人民网北京3月21日电(记者林露)近日,教育部印发《关于做好2018年普通高校招生工作的通知》,要求各地各校全面落实《国务院关于深化考试招生制度改革的实施意见》,发展素质教育,促进教育公平,科学选拔人才,确保高校考试招生公平公正和规范有序。

Early research and development:

Merging the networks and creating the Internet:

Commercialization, privatization, broader access leads to the modern Internet:

Examples of Internet services:

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

IP has the task of delivering packets from the source host to the destination host solely based on the IP addresses in the packet headers. For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information. IP was the connectionless datagram service in the original Transmission Control Program introduced by Vint Cerf and Bob Kahn in 1974, which was complemented by a connection-oriented service that became the basis for the Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP.

The first major version of IP, Internet Protocol version 4 (IPv4), is the dominant protocol of the Internet. Its successor is Internet Protocol version 6 (IPv6), which has been in increasing deployment on the public Internet since around 2006.[1]

Function

[edit]
Encapsulation of application data carried by UDP to a link protocol frame

The Internet Protocol is responsible for addressing host interfaces, encapsulating data into datagrams (including fragmentation and reassembly) and routing datagrams from a source host interface to a destination host interface across one or more IP networks.[2] For these purposes, the Internet Protocol defines the format of packets and provides an addressing system.

Each datagram has two components: a header and a payload. The IP header includes a source IP address, a destination IP address, and other metadata needed to route and deliver the datagram. The payload is the data that is transported. This method of nesting the data payload in a packet with a header is called encapsulation.

IP addressing entails the assignment of IP addresses and associated parameters to host interfaces. The address space is divided into subnets, involving the designation of network prefixes. IP routing is performed by all hosts, as well as routers, whose main function is to transport packets across network boundaries. Routers communicate with one another via specially designed routing protocols, either interior gateway protocols or exterior gateway protocols, as needed for the topology of the network.[3]

Addressing methods

[edit]
Routing schemes
Unicast

Broadcast

Multicast

Anycast

There are four principal addressing methods in the Internet Protocol:

  • Unicast delivers a message to a single specific node using a one-to-one association between a sender and destination: each destination address uniquely identifies a single receiver endpoint.
  • Broadcast delivers a message to all nodes in the network using a one-to-all association; a single datagram (or packet) from one sender is routed to all of the possibly multiple endpoints associated with the broadcast address. The network automatically replicates datagrams as needed to reach all the recipients within the scope of the broadcast, which is generally an entire network subnet.
  • Multicast delivers a message to a group of nodes that have expressed interest in receiving the message using a one-to-many-of-many or many-to-many-of-many association; datagrams are routed simultaneously in a single transmission to many recipients. Multicast differs from broadcast in that the destination address designates a subset, not necessarily all, of the accessible nodes.
  • Anycast delivers a message to any one out of a group of nodes, typically the one nearest to the source using a one-to-one-of-many[4] association where datagrams are routed to any single member of a group of potential receivers that are all identified by the same destination address. The routing algorithm selects the single receiver from the group based on which is the nearest according to some distance or cost measure.

Version history

[edit]
A timeline for the development of the transmission control Protocol TCP and Internet Protocol IP
First Internet demonstration, linking the ARPANET, PRNET, and SATNET on November 22, 1977

In May 1974, the Institute of Electrical and Electronics Engineers (IEEE) published a paper entitled "A Protocol for Packet Network Intercommunication".[5] The paper's authors, Vint Cerf and Bob Kahn, described an internetworking protocol for sharing resources using packet switching among network nodes. A central control component of this model was the Transmission Control Program that incorporated both connection-oriented links and datagram services between hosts. The monolithic Transmission Control Program was later divided into a modular architecture consisting of the Transmission Control Protocol and User Datagram Protocol at the transport layer and the Internet Protocol at the internet layer. The model became known as the Department of Defense (DoD) Internet Model and Internet protocol suite, and informally as TCP/IP.

The following Internet Experiment Note (IEN) documents describe the evolution of the Internet Protocol into the modern version of IPv4:[6]

  • IEN 2 Comments on Internet Protocol and TCP (August 1977) describes the need to separate the TCP and Internet Protocol functionalities (which were previously combined). It proposes the first version of the IP header, using 0 for the version field.
  • IEN 26 A Proposed New Internet Header Format (February 1978) describes a version of the IP header that uses a 1-bit version field.
  • IEN 28 Draft Internetwork Protocol Description Version 2 (February 1978) describes IPv2.
  • IEN 41 Internetwork Protocol Specification Version 4 (June 1978) describes the first protocol to be called IPv4. The IP header is different from the modern IPv4 header.
  • IEN 44 Latest Header Formats (June 1978) describes another version of IPv4, also with a header different from the modern IPv4 header.
  • IEN 54 Internetwork Protocol Specification Version 4 (September 1978) is the first description of IPv4 using the header that would become standardized in 1980 as RFC 760.
  • IEN 80
  • IEN 111
  • IEN 123
  • IEN 128/RFC 760 (1980)

IP versions 1 to 3 were experimental versions, designed between 1973 and 1978.[7] Versions 2 and 3 supported variable-length addresses ranging between 1 and 16 octets (between 8 and 128 bits).[8] An early draft of version 4 supported variable-length addresses of up to 256 octets (up to 2048 bits)[9] but this was later abandoned in favor of a fixed-size 32-bit address in the final version of IPv4. This remains the dominant internetworking protocol in use in the Internet Layer; the number 4 identifies the protocol version, carried in every IP datagram. IPv4 is defined in RFC 791 (1981).

Version number 5 was used by the Internet Stream Protocol, an experimental streaming protocol that was not adopted.[7]

The successor to IPv4 is IPv6. IPv6 was a result of several years of experimentation and dialog during which various protocol models were proposed, such as TP/IX (RFC 1475), PIP (RFC 1621) and TUBA (TCP and UDP with Bigger Addresses, RFC 1347). Its most prominent difference from version 4 is the size of the addresses. While IPv4 uses 32 bits for addressing, yielding c. 4.3 billion (4.3×109) addresses, IPv6 uses 128-bit addresses providing c. 3.4×1038 addresses. Although adoption of IPv6 has been slow, as of January 2023, most countries in the world show significant adoption of IPv6,[10] with over 41% of Google's traffic being carried over IPv6 connections.[11]

The assignment of the new protocol as IPv6 was uncertain until due diligence assured that IPv6 had not been used previously.[12] Other Internet Layer protocols have been assigned version numbers,[13] such as 7 (IP/TX), 8 and 9 (historic). Notably, on April 1, 1994, the IETF published an April Fools' Day RfC about IPv9.[14] IPv9 was also used in an alternate proposed address space expansion called TUBA.[15] A 2004 Chinese proposal for an IPv9 protocol appears to be unrelated to all of these, and is not endorsed by the IETF.

IP version numbers

[edit]

As the version number is carried in a 4-bit field, only numbers 0–15 can be assigned.

IP version Description Year Status
0 Internet Protocol, pre-v4 N/A Reserved[16]
1 Experimental version 1973 Obsolete
2 Experimental version 1977 Obsolete
3 Experimental version 1978 Obsolete
4 Internet Protocol version 4 (IPv4)[17] 1981 Active
5 Internet Stream Protocol (ST) 1979 Obsolete; superseded by ST-II or ST2
Internet Stream Protocol (ST-II or ST2)[18] 1987 Obsolete; superseded by ST2+
Internet Stream Protocol (ST2+) 1995 Obsolete
6 Simple Internet Protocol (SIP) N/A Obsolete; merged into IPv6 in 1995[16]
Internet Protocol version 6 (IPv6)[19] 1995 Active
7 TP/IX The Next Internet (IPv7)[20] 1993 Obsolete[21]
8 P Internet Protocol (PIP)[22] 1994 Obsolete; merged into SIP in 1993
9 TCP and UDP over Bigger Addresses (TUBA) 1992 Obsolete[23]
IPv9 1994 April Fools' Day joke[24]
Chinese IPv9 2004 Abandoned
10–14 N/A N/A Unassigned
15 Version field sentinel value N/A Reserved

Reliability

[edit]

The design of the Internet protocol suite adheres to the end-to-end principle, a concept adapted from the CYCLADES project. Under the end-to-end principle, the network infrastructure is considered inherently unreliable at any single network element or transmission medium and is dynamic in terms of the availability of links and nodes. No central monitoring or performance measurement facility exists that tracks or maintains the state of the network. For the benefit of reducing network complexity, the intelligence in the network is located in the end nodes.

As a consequence of this design, the Internet Protocol only provides best-effort delivery and its service is characterized as unreliable. In network architectural parlance, it is a connectionless protocol, in contrast to connection-oriented communication. Various fault conditions may occur, such as data corruption, packet loss and duplication. Because routing is dynamic, meaning every packet is treated independently, and because the network maintains no state based on the path of prior packets, different packets may be routed to the same destination via different paths, resulting in out-of-order delivery to the receiver.

All fault conditions in the network must be detected and compensated by the participating end nodes. The upper layer protocols of the Internet protocol suite are responsible for resolving reliability issues. For example, a host may buffer network data to ensure correct ordering before the data is delivered to an application.

IPv4 provides safeguards to ensure that the header of an IP packet is error-free. A routing node discards packets that fail a header checksum test. Although the Internet Control Message Protocol (ICMP) provides notification of errors, a routing node is not required to notify either end node of errors. IPv6, by contrast, operates without header checksums, since current link layer technology is assumed to provide sufficient error detection.[25][26]

[edit]

The dynamic nature of the Internet and the diversity of its components provide no guarantee that any particular path is actually capable of, or suitable for, performing the data transmission requested. One of the technical constraints is the size of data packets possible on a given link. Facilities exist to examine the maximum transmission unit (MTU) size of the local link and Path MTU Discovery can be used for the entire intended path to the destination.[27]

The IPv4 internetworking layer automatically fragments a datagram into smaller units for transmission when the link MTU is exceeded. IP provides re-ordering of fragments received out of order.[28] An IPv6 network does not perform fragmentation in network elements, but requires end hosts and higher-layer protocols to avoid exceeding the path MTU.[29]

The Transmission Control Protocol (TCP) is an example of a protocol that adjusts its segment size to be smaller than the MTU. The User Datagram Protocol (UDP) and ICMP disregard MTU size, thereby forcing IP to fragment oversized datagrams.[30]

Security

[edit]

During the design phase of the ARPANET and the early Internet, the security aspects and needs of a public, international network were not adequately anticipated. Consequently, many Internet protocols exhibited vulnerabilities highlighted by network attacks and later security assessments. In 2008, a thorough security assessment and proposed mitigation of problems was published.[31] The IETF has been pursuing further studies.[32]

See also

[edit]

References

[edit]
  1. ^ The Economics of Transition to Internet Protocol version 6 (IPv6) (Report). OECD Digital Economy Papers. OECD. 2025-08-05. doi:10.1787/5jxt46d07bhc-en. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  2. ^ Charles M. Kozierok, The TCP/IP Guide, archived from the original on 2025-08-05, retrieved 2025-08-05
  3. ^ "IP Technologies and Migration — EITC". www.eitc.org. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  4. ^ Go?cień, Ró?a; Walkowiak, Krzysztof; Klinkowski, Miros?aw (2025-08-05). "Tabu search algorithm for routing, modulation and spectrum allocation in elastic optical network with anycast and unicast traffic". Computer Networks. 79: 148–165. doi:10.1016/j.comnet.2014.12.004. ISSN 1389-1286.
  5. ^ Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. Archived (PDF) from the original on 2025-08-05. Retrieved 2025-08-05. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  6. ^ "Internet Experiment Note Index". www.rfc-editor.org. Retrieved 2025-08-05.
  7. ^ a b Stephen Coty (2025-08-05). "Where is IPv1, 2, 3, and 5?". Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  8. ^ Postel, Jonathan B. (February 1978). "Draft Internetwork Protocol Specification Version 2" (PDF). RFC Editor. IEN 28. Retrieved 6 October 2022. Archived 16 May 2019 at the Wayback Machine
  9. ^ Postel, Jonathan B. (June 1978). "Internetwork Protocol Specification Version 4" (PDF). RFC Editor. IEN 41. Retrieved 11 February 2024. Archived 16 May 2019 at the Wayback Machine
  10. ^ Strowes, Stephen (4 Jun 2021). "IPv6 Adoption in 2021". RIPE Labs. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  11. ^ "IPv6". Google. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  12. ^ Mulligan, Geoff. "It was almost IPv7". O'Reilly. Archived from the original on 5 July 2015. Retrieved 4 July 2015.
  13. ^ "IP Version Numbers". Internet Assigned Numbers Authority. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  14. ^ RFC 1606: A Historical Perspective On The Usage Of IP Version 9. April 1, 1994.
  15. ^ Ross Callon (June 1992). TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing. doi:10.17487/RFC1347. RFC 1347.
  16. ^ a b Jeff Doyle; Jennifer Carroll (2006). Routing TCP/IP. Vol. 1 (2 ed.). Cisco Press. p. 8. ISBN 978-1-58705-202-6.
  17. ^ J. Postel, ed. (September 1981). INTERNET PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION. IETF. doi:10.17487/RFC0791. STD 5. RFC 791. IEN 128, 123, 111, 80, 54, 44, 41, 28, 26. Internet Standard 5. Obsoletes RFC 760. Updated by RFC 1349, 2474 and 6864.
  18. ^ L. Delgrossi; L. Berger, eds. (August 1995). Internet Stream Protocol Version 2 (ST2) Protocol Specification - Version ST2+. Network Working Group. doi:10.17487/RFC1819. RFC 1819. Historic. Obsoletes RFC 1190 and IEN 119.
  19. ^ S. Deering; R. Hinden (July 2017). Internet Protocol, Version 6 (IPv6) Specification. Internet Engineering Task Force. doi:10.17487/RFC8200. STD 86. RFC 8200. Internet Standard 86. Obsoletes RFC 2460.
  20. ^ R. Ullmann (June 1993). TP/IX: The Next Internet. Network Working Group. doi:10.17487/RFC1475. RFC 1475. Historic. Obsoleted by RFC 6814.
  21. ^ C. Pignataro; F. Gont (November 2012). Formally Deprecating Some IPv4 Options. Internet Engineering Task Force. doi:10.17487/RFC6814. ISSN 2070-1721. RFC 6814. Proposed Standard. Obsoletes RFC 1385, 1393, 1475 and 1770.
  22. ^ P. Francis (May 1994). Pip Near-term Architecture. Network Working Group. doi:10.17487/RFC1621. RFC 1621. Historic.
  23. ^ Ross Callon (June 1992). TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing. Network Working Group. doi:10.17487/RFC1347. RFC 1347. Historic.
  24. ^ J. Onions (1 April 1994). A Historical Perspective On The Usage Of IP Version 9. Network Working Group. doi:10.17487/RFC1606. RFC 1606. Informational. This is an April Fools' Day Request for Comments.
  25. ^ RFC 1726 section 6.2
  26. ^ RFC 2460
  27. ^ Rishabh, Anand (2012). Wireless Communication. S. Chand Publishing. ISBN 978-81-219-4055-9. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  28. ^ Siyan, Karanjit. Inside TCP/IP, New Riders Publishing, 1997. ISBN 1-56205-714-6
  29. ^ Bill Cerveny (2025-08-05). "IPv6 Fragmentation". Arbor Networks. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  30. ^ Parker, Don (2 November 2010). "Basic Journey of a Packet". Symantec. Symantec. Archived from the original on 20 January 2022. Retrieved 4 May 2014.
  31. ^ Fernando Gont (July 2008), Security Assessment of the Internet Protocol (PDF), CPNI, archived from the original (PDF) on 2025-08-05
  32. ^ F. Gont (July 2011). Security Assessment of the Internet Protocol version 4. doi:10.17487/RFC6274. RFC 6274.
[edit]
车顶放饮料是什么意思 三途苦是指的什么 四海扬名是什么生肖 玉米淀粉可以做什么 财评是什么意思
男生为什么要割包皮 决明子配什么喝最减肥 极乐是什么意思 彬字五行属什么 拉稀拉水吃什么药管用
什么时机塞给医生红包 美妙绝伦是什么意思 手脚发热是什么原因 念珠菌用什么药最好 代肝是什么意思
什么叫烟雾病 子宫内膜薄有什么影响 再接再厉是什么意思 品相是什么意思 eb病毒阳性是什么意思
吃什么可以快速美白hcv9jop3ns3r.cn 妈妈的舅舅叫什么hcv8jop4ns9r.cn 做无创需要注意什么wzqsfys.com 梦见撞车是什么预兆hcv9jop6ns8r.cn 窦性心动过速吃什么药hcv8jop2ns5r.cn
腿部抽筋是什么原因引起的hcv7jop5ns5r.cn 采耳是什么意思beikeqingting.com 第二职业干点什么好呢imcecn.com 肝不好吃什么中成药hcv8jop1ns3r.cn 雯字五行属什么hcv7jop9ns3r.cn
来曲唑片是什么药hcv8jop4ns8r.cn 隆科多为什么不姓佟hcv7jop4ns8r.cn 洋参片泡水喝有什么功效hcv9jop5ns2r.cn 善字五行属什么hcv9jop4ns0r.cn 一什么波纹hcv8jop0ns3r.cn
画龙点睛是什么生肖hcv8jop3ns5r.cn 测五行缺什么hcv8jop0ns6r.cn 全科医学科是什么科hcv7jop5ns6r.cn 孕妇拉肚子可以吃什么药aiwuzhiyu.com 着数是什么意思hcv8jop9ns1r.cn
百度