五常大米是什么意思| 什么叫词牌名| 付之一炬是什么意思| 月经来了一点就没了是什么原因| 月经期间适合吃什么食物| 喝酒吃海带有什么危害| 瘦肉炒什么配菜好吃| 早上起床咳嗽是什么原因| 清洁度二度是什么意思| 今年是什么命| 吃什么润肺养肺最快| 喝红酒对身体有什么好处| 角是什么意思| 脚气真菌感染用什么药| 突然流鼻血是什么原因| 5月28日什么星座| 摩什么接什么| 什么的白云| 沧州有什么好玩的地方| 尿素氮肌酐比值偏高是什么原因| 辛辣的辛指什么| 朋友生日送什么礼物好| 跳蚤咬了擦什么药最好| 潴留囊肿是什么意思| a型rhd阳性是什么意思| 暗渡陈仓什么意思| 冷宫是什么意思| 怀孕胎盘低有什么影响| 溶肌症的症状是什么| 扁桃体发炎是什么引起的| 闺蜜过生日送什么礼物好| 花金龟吃什么| 急性扁桃体化脓是什么原因引起的| 对头是什么意思| 中指长痣代表什么| 红楼梦是一部什么小说| 85年什么命| 7月7号是什么星座| 12月生日是什么星座| 羊肉不能和什么水果一起吃| 一什么鹿角| 什么地问填词语| 藏红花什么人不能喝| 世界上最多笔画的字是什么| 老鼠为什么怕猫| 上大厕拉出血是什么原因| 喝罗汉果水有什么功效| 稳重什么意思| 内径是什么意思| 7月7号是什么星座| 天珠到底是什么| 6月26号是什么星座| 什么水果不能吃| 压疮用什么药最快能好| 免疫力和抵抗力有什么区别| 佟丽娅是什么民族| 1964年出生属什么| 女人腿肿应该检查什么| 维生素b族适合什么人吃| 口干舌燥是什么意思| 肝硬化是什么症状| 翔字五行属什么| mcm是什么意思| 嘴苦是什么情况| 只要睡觉就做梦是什么原因| 晴字五行属什么| 竹子开花意味着什么| 望闻问切的闻是什么意思| 11.24是什么星座| 八拜之交是什么生肖| 女菩萨是什么意思| 宝石蓝配什么颜色好看| 七匹狼属于什么档次| 什么是疤痕体质| 血钙是什么意思| 防晒衣什么材质最防晒| 牙冠什么材质的好| 飞机上不能带什么| bmi指数是什么意思| 消渴是什么意思| 农历七月份是什么星座| 头昏脑胀吃什么药| 着凉拉肚子吃什么药| 脾胃不和吃什么中成药| 89年属蛇是什么命| 淋巴细胞计数偏低是什么原因| 月经是黑色的是什么原因| 风湿是什么原因引起的| 辅酶q10什么时候吃| 教师节送老师什么礼物最好| 最小的一位数是什么| 男人喝什么汤补肾壮阳| 农历二月是什么月| 伽蓝菩萨保佑什么| 软科是什么意思| 6.8什么星座| 属猪的五行属什么| 79年属什么的| 北京有什么特产| 双一流大学是什么| 什么星星| 做提肛运动有什么好处| 蝉是什么| 大耳朵狗叫什么| 心胸狭窄是什么意思| 抽筋缺什么维生素| 半夜容易醒是什么原因| 半套是什么意思| 维生素ad和维生素d有什么区别| 车厘子与樱桃有什么区别| 眼睛发热是什么原因| 便秘吃什么水果| 四维彩超是检查什么| 怙恃是什么意思| 搬家当天有什么讲究| 手淫导致的阳痿早泄吃什么药| 肩膀疼去医院挂什么科| 痛风可以喝什么饮料| 女的肾虚是什么原因引起的| 打喷嚏是什么原因引起的| 扁平疣是什么原因长出来的| 低gi食物是什么意思| 为什么叫清明上河图| 反复是什么意思| 神经痛吃什么药好| gt是什么意思| 什么样的笑容| 吃了拉肚子的药叫什么| 眼睛红肿吃什么消炎药| 梦见吵架是什么预兆| 医保乙类是什么意思| 知更鸟是什么鸟| 一个草字头一个氏念什么| 芦荟有什么用| 一年一片避孕药叫什么| 冬虫夏草生长在什么地方| 性出血是什么原因造成的呢要怎么办| 千呼万唤是什么生肖| 什么人容易得淋巴癌| 灿字五行属什么| 脂肪肝吃什么中成药| 珍珠状丘疹有什么危害| 耳鸣什么原因| 愿闻其详是什么意思| 四级什么时候报名| 晚上梦到蛇是什么意思| 把尿是什么意思| 白虎女是什么意思| 钾是什么| 艾滋病是什么病毒| 胃疼吃什么消炎药| jhs空调是什么牌子| 刷单是什么意思| 身怀六甲什么意思| 掌眼什么意思| 舒筋健腰丸为什么这么贵| 头部紧绷感是什么原因| 梦见爬山是什么预兆| 牛b克拉斯什么意思| 催乳素是什么意思| 飞廉是什么意思| 七月是什么星座| 李子什么季节成熟| yellow是什么颜色| 丙型肝炎病毒抗体阴性什么意思| 33数字代表什么意思| 咽炎吃什么药好| 怀孕什么时候能测出来| 突然手发抖是什么原因| 眼睛蒙蒙的是什么原因| 产复欣颗粒什么时候吃| 外阴过敏用什么药| 如何查自己是什么命格| 21三体临界风险是什么意思| 花子是什么意思| rh血型是什么血型| 长沙有什么大学| 伊玛目是什么意思| 毫无保留什么意思| 雅号是什么意思| 知了是什么意思| 甘草泡水喝有什么好处和坏处| 电气石是什么东西| 考护士证需要什么条件| 商纣王姓什么| 四级警长是什么级别| 鸳鸯是什么意思| 以梦为马什么意思| 高反人群一般是什么人| 母仪天下什么意思| 乳铁蛋白对宝宝有什么好处| 愚不可及是什么意思| 人参泡酒有什么功效和作用| 淋巴结有什么症状| 气血两虚是什么意思| 什么是拘役| 员级职称是什么意思| 流年什么意思| 为什么乳头会痛| 月亮什么时候是圆的| 默契是什么意思| 马革裹尸是什么意思| 梦见牙齿掉光了是什么征兆| 嘴角有痣代表什么| 紫色芒果是什么品种| 九月九日是什么节日| 赊账是什么意思| 胎盘位于子宫前壁是什么意思| 焦虑症是什么| 女人的动物是什么生肖| peaches是什么意思| 鼻涕倒流到咽喉老吐痰吃什么药能根治| 流水是什么| 佛是什么| 为什么手脚老是出汗| 美工是做什么的| 棠字五行属什么| 梦见好多死人是什么征兆| 什么叫人彘| 阴历七月是什么星座| 做梦梦到蛇是什么征兆| hpv6阳性是什么意思| 牙龈肿痛吃什么药好得快| 寻常是什么意思| 颈椎病用什么药| 私是什么意思| 白细胞酯酶弱阳性是什么意思| 甜菜根在中国叫什么| 人身体缺钾是什么症状| 鱼头和什么搭配煲汤好| 为什么油耳朵就有狐臭| 狗狗胰腺炎有什么症状| 木全读什么| 蜻蜓为什么点水| 安眠穴在什么位置| 桃胶什么时候采摘最好| 什么醒酒| 眼底照相是检查什么| 不让他看我的朋友圈是什么效果| 慢性咽炎吃什么| 什么是不饱和脂肪酸| 懦弱的反义词是什么| 泡脚用什么东西泡最好| 梦到分手了是什么征兆| e6e7阳性是什么意思| 全麻是什么感觉| 高炮是什么| 善变是什么意思| 拉墨绿色的大便是什么原因| 上午十点半是什么时辰| 肠胃炎吃什么水果比较好| 心理疾病吃什么药| klf是什么意思| hpv病毒是什么病| 温州人为什么会做生意| 红薯是什么季节的| 吃什么去胃火口臭| va是什么维生素| 糖尿病人适合吃什么水果| 潜血十一是什么意思| 葛根粉有什么作用| 怀孕有什么征兆| 月亮发红是什么原因| 屌丝男是什么意思| 百度Jump to content

“瑞犬迎新·幸福中华”2018京津冀网络大过年活动启动仪式暨“互联网之夜”——天津网络人士迎新春主题活动

From Wikipedia, the free encyclopedia
百度 阿里表示:我们现在已经与哈维达成了一份基本协议,他将继续留在这里两年的时间。

Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires (e.g. carbon nanotube or silicon nanowires) or advanced molecular electronics.

Nanoelectronic devices have critical dimensions with a size range between 1 nm and 100 nm.[1] Recent silicon MOSFET (metal–oxide–semiconductor field-effect transistor, or MOS transistor) technology generations are already within this regime, including 22 nanometers CMOS (complementary MOS) nodes and succeeding 14 nm, 10 nm and 7 nm FinFET (fin field-effect transistor) generations. Nanoelectronics is sometimes considered as disruptive technology because present candidates are significantly different from traditional transistors.

Fundamental concepts

[edit]

In 1965, Gordon Moore observed that silicon transistors were undergoing a continual process of scaling downward, an observation which was later codified as Moore's law. Since his observation, transistor minimum feature sizes have decreased from 10 micrometers to the 10 nm range as of 2019. Note that the technology node doesn't directly represent the minimum feature size. The field of nanoelectronics aims to enable the continued realization of this law by using new methods and materials to build electronic devices with feature sizes on the nanoscale.

Mechanical issues

[edit]

The volume of an object decreases as the third power of its linear dimensions, but the surface area only decreases as its second power. This somewhat subtle and unavoidable principle has significant ramifications. For example, the power of a drill (or any other machine) is proportional to the volume, while the friction of the drill's bearings and gears is proportional to their surface area. For a normal-sized drill, the power of the device is enough to handily overcome any friction. However, scaling its length down by a factor of 1000, for example, decreases its power by 10003 (a factor of a billion) while reducing the friction by only 10002 (a factor of only a million). Proportionally it has 1000 times less power per unit friction than the original drill. If the original friction-to-power ratio was, say, 1%, that implies the smaller drill will have 10 times as much friction as power; the drill is useless.

For this reason, while super-miniature electronic integrated circuits are fully functional, the same technology cannot be used to make working mechanical devices beyond the scales where frictional forces start to exceed the available power. So even though you may see microphotographs of delicately etched silicon gears, such devices are currently little more than curiosities with limited real world applications, for example, in moving mirrors and shutters.[2] Surface tension increases in much the same way, thus magnifying the tendency for very small objects to stick together. This could possibly make any kind of "micro factory" impractical: even if robotic arms and hands could be scaled down, anything they pick up will tend to be impossible to put down. The above being said, molecular evolution has resulted in working cilia, flagella, muscle fibers and rotary motors in aqueous environments, all on the nanoscale. These machines exploit the increased frictional forces found at the micro or nanoscale. Unlike a paddle or a propeller which depends on normal frictional forces (the frictional forces perpendicular to the surface) to achieve propulsion, cilia develop motion from the exaggerated drag or laminar forces (frictional forces parallel to the surface) present at micro and nano dimensions. To build meaningful "machines" at the nanoscale, the relevant forces need to be considered. We are faced with the development and design of intrinsically pertinent machines rather than the simple reproductions of macroscopic ones.

All scaling issues therefore need to be assessed thoroughly when evaluating nanotechnology for practical applications.

Approaches

[edit]

Nanofabrication

[edit]

For example, electron transistors, which involve transistor operation based on a single electron. Nanoelectromechanical systems also fall under this category. Nanofabrication can be used to construct ultradense parallel arrays of nanowires, as an alternative to synthesizing nanowires individually.[3][4] Of particular prominence in this field, silicon nanowires are being increasingly studied towards diverse applications in nanoelectronics, energy conversion and storage. Such SiNWs can be fabricated by thermal oxidation in large quantities to yield nanowires with controllable thickness.

Nanomaterials electronics

[edit]

Besides being small and allowing more transistors to be packed into a single chip, the uniform and symmetrical structure of nanowires and/or nanotubes allows a higher electron mobility (faster electron movement in the material), a higher dielectric constant (faster frequency), and a symmetrical electron/hole characteristic.[5]

Also, nanoparticles can be used as quantum dots.

Molecular electronics

[edit]

Single-molecule electronic devices are extensively researched. These schemes would make heavy use of molecular self-assembly, designing the device components to construct a larger structure or even a complete system on their own. This can be very useful for reconfigurable computing, and may even completely replace present FPGA technology.

Molecular electronics[6] is a technology under development brings hope for future atomic-scale electronic systems. A promising application of molecular electronics was proposed by the IBM researcher Ari Aviram and the theoretical chemist Mark Ratner in their 1974 and 1988 papers Molecules for Memory, Logic and Amplification (see unimolecular rectifier).[7][8]

Many nanowire structures have been studied as candidates for interconnecting nanoelectronic devices: nanotubes of carbon and other materials, metal atom chaines, cumulene or polyyne carbon atom chains,[9] and many polymers such as polythiophenes.

Other approaches

[edit]

Nanoionics studies the transport of ions rather than electrons in nanoscale systems.

Nanophotonics studies the behavior of light on the nanoscale, and has the goal of developing devices that take advantage of this behavior.

Nanoelectronic devices

[edit]

Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.

Computers

[edit]
Simulation result for formation of inversion channel (electron density) and attainment of threshold voltage (IV) in a nanowire MOSFET. Note that the threshold voltage for this device lies around 0.45 V.

Nanoelectronics holds the promise of making computer processors more powerful than are possible with conventional semiconductor fabrication techniques. A number of approaches are currently being researched, including new forms of nanolithography, as well as the use of nanomaterials such as nanowires or small molecules in place of traditional CMOS components. Field-effect transistors have been made using both semiconducting carbon nanotubes[10] and with heterostructured semiconductor nanowires (SiNWs).[11]

Memory storage

[edit]

Electronic memory designs in the past have largely relied on the formation of transistors. However, research into crossbar switch based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM and Hewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory.[citation needed]

An example of such novel devices is based on spintronics. The dependence of the resistance of a material (due to the spin of the electrons) on an external field is called magnetoresistance. This effect can be significantly amplified (GMR - Giant Magneto-Resistance) for nanosized objects, for example when two ferromagnetic layers are separated by a nonmagnetic layer, which is several nanometers thick (e.g. Co-Cu-Co). The GMR effect has led to a strong increase in the data storage density of hard disks and made the gigabyte range possible. The so-called tunneling magnetoresistance (TMR) is very similar to GMR and based on the spin dependent tunneling of electrons through adjacent ferromagnetic layers. Both GMR and TMR effects can be used to create a non-volatile main memory for computers, such as the so-called magnetic random access memory or MRAM.[citation needed]

Novel optoelectronic devices

[edit]

In the modern communication technology traditional analog electrical devices are increasingly replaced by optical or optoelectronic devices due to their enormous bandwidth and capacity, respectively. Two promising examples are photonic crystals and quantum dots.[citation needed] Photonic crystals are materials with a periodic variation in the refractive index with a lattice constant that is half the wavelength of the light used. They offer a selectable band gap for the propagation of a certain wavelength, thus they resemble a semiconductor, but for light or photons instead of electrons. Quantum dots are nanoscaled objects, which can be used, among many other things, for the construction of lasers. The advantage of a quantum dot laser over the traditional semiconductor laser is that their emitted wavelength depends on the diameter of the dot. Quantum dot lasers are cheaper and offer a higher beam quality than conventional laser diodes.

Displays

[edit]

The production of displays with low energy consumption might be accomplished using carbon nanotubes (CNT) and/or silicon nanowires. Such nanostructures are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field-emission displays (FED). The principle of operation resembles that of the cathode-ray tube, but on a much smaller length scale.[citation needed]

Quantum computers

[edit]

Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. In nanoelectronic devices, the qubit is encoded by the quantum state of one or more electrons spin. The spin are confined by either a semiconductor quantum dot or a dopant.[12]

Radios

[edit]

Nanoradios have been developed structured around carbon nanotubes.[13]

Energy production

[edit]

Research is ongoing to use nanowires and other nanostructured materials with the hope to create cheaper and more efficient solar cells than are possible with conventional planar silicon solar cells.[14] It is believed that the invention of more efficient solar energy would have a great effect on satisfying global energy needs.

There is also research into energy production for devices that would operate in vivo, called bio-nano generators. A bio-nano generator is a nanoscale electrochemical device, like a fuel cell or galvanic cell, but drawing power from blood glucose in a living body, much the same as how the body generates energy from food. To achieve the effect, an enzyme is used that is capable of stripping glucose of its electrons, freeing them for use in electrical devices. The average person's body could, theoretically, generate 100 watts of electricity (about 2000 food calories per day) using a bio-nano generator.[15] However, this estimate is only true if all food was converted to electricity, and the human body needs some energy consistently, so possible power generated is likely much lower. The electricity generated by such a device could power devices embedded in the body (such as pacemakers), or sugar-fed nanorobots. Much of the research done on bio-nano generators is still experimental, with Panasonic's Nanotechnology Research Laboratory among those at the forefront.

Medical diagnostics

[edit]

There is great interest in constructing nanoelectronic devices[16][17][18] that could detect the concentrations of biomolecules in real time for use as medical diagnostics,[19] thus falling into the category of nanomedicine.[20] A parallel line of research seeks to create nanoelectronic devices which could interact with single cells for use in basic biological research.[21] These devices are called nanosensors. Such miniaturization on nanoelectronics towards in vivo proteomic sensing should enable new approaches for health monitoring, surveillance, and defense technology.[22][23][24]

References

[edit]
  1. ^ Beaumont, Steven P. (September 1996). "III–V Nanoelectronics". Microelectronic Engineering. 32 (1): 283–295. doi:10.1016/0167-9317(95)00367-3. ISSN 0167-9317.
  2. ^ "MEMS Overview". Retrieved 2025-08-14.
  3. ^ Melosh, N.; Boukai, Abram; Diana, Frederic; Gerardot, Brian; Badolato, Antonio; Petroff, Pierre; Heath, James R. (2003). "Ultrahigh density nanowire lattices and circuits". Science. 300 (5616): 112–5. Bibcode:2003Sci...300..112M. doi:10.1126/science.1081940. PMID 12637672. S2CID 6434777.
  4. ^ Das, S.; Gates, A.J.; Abdu, H.A.; Rose, G.S.; Picconatto, C.A.; Ellenbogen, J.C. (2007). "Designs for Ultra-Tiny, Special-Purpose Nanoelectronic Circuits". IEEE Transactions on Circuits and Systems I. 54 (11): 11. doi:10.1109/TCSI.2007.907864. S2CID 13575385.
  5. ^ Goicoechea, J.; Zamarre?oa, C.R.; Matiasa, I.R.; Arregui, F.J. (2007). "Minimizing the photobleaching of self-assembled multilayers for sensor applications". Sensors and Actuators B: Chemical. 126 (1): 41–47. Bibcode:2007SeAcB.126...41G. doi:10.1016/j.snb.2006.10.037.
  6. ^ Petty, M.C.; Bryce, M.R.; Bloor, D. (1995). An Introduction to Molecular Electronics. London: Edward Arnold. ISBN 978-0-19-521156-6.
  7. ^ Aviram, A.; Ratner, M. A. (1974). "Molecular Rectifier". Chemical Physics Letters. 29 (2): 277–283. Bibcode:1974CPL....29..277A. doi:10.1016/0009-2614(74)85031-1.
  8. ^ Aviram, A. (1988). "Molecules for memory, logic, and amplification". Journal of the American Chemical Society. 110 (17): 5687–5692. Bibcode:1988JAChS.110.5687A. doi:10.1021/ja00225a017.
  9. ^ Bryce, Martin R. (2021). "A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics". J. Mater. Chem. C. 9 (33): 10524–10546. doi:10.1039/d1tc01406d. ISSN 2050-7526. S2CID 235456429.
  10. ^ Postma, Henk W. Ch.; Teepen, Tijs; Yao, Zhen; Grifoni, Milena; Dekker, Cees (2001). "Carbon nanotube single-electron transistors at room temperature". Science. 293 (5527): 76–79. Bibcode:2001Sci...293...76P. doi:10.1126/science.1061797. PMID 11441175. S2CID 10977413.
  11. ^ Xiang, Jie; Lu, Wei; Hu, Yongjie; Wu, Yue; Yan Hao; Lieber, Charles M. (2006). "Ge/Si nanowire heterostructures as highperformance field-effect transistors". Nature. 441 (7092): 489–493. Bibcode:2006Natur.441..489X. doi:10.1038/nature04796. PMID 16724062. S2CID 4408636.
  12. ^ Achilli, Simona; Le, Nguyen H.; Fratesi, Guido; Manini, Nicola; Onida, Giovanni; Turchetti, Marco; Ferrari, Giorgio; Shinada, Takahiro; Tanii, Takashi; Prati, Enrico (February 2021). "Position-Controlled Functionalization of Vacancies in Silicon by Single-Ion Implanted Germanium Atoms". Advanced Functional Materials. 31 (21): 2011175. arXiv:2102.01390v2. doi:10.1002/adfm.202011175. S2CID 231749540.
  13. ^ Jensen, K.; Weldon, J.; Garcia, H.; Zettl A. (2007). "Nanotube Radio". Nano Lett. 7 (11): 3508–3511. Bibcode:2007NanoL...7.3508J. doi:10.1021/nl0721113. PMID 17973438.
  14. ^ Tian, Bozhi; Zheng, Xiaolin; Kempa, Thomas J.; Fang, Ying; Yu, Nanfang; Yu, Guihua; Huang, Jinlin; Lieber, Charles M. (2007). "Coaxial silicon nanowires as solar cells and nanoelectronic power sources". Nature. 449 (7164): 885–889. Bibcode:2007Natur.449..885T. doi:10.1038/nature06181. PMID 17943126. S2CID 2688078.
  15. ^ "Power from blood could lead to 'human batteries'". Sydney Morning Herald. August 4, 2003. Retrieved 2025-08-14.
  16. ^ LaVan, D.A.; McGuire, Terry & Langer, Robert (2003). "Small-scale systems for in vivo drug delivery". Nat. Biotechnol. 21 (10): 1184–1191. doi:10.1038/nbt876. PMID 14520404. S2CID 1490060.
  17. ^ Grace, D. (2008). "Special Feature: Emerging Technologies". Medical Product Manufacturing News. 12: 22–23. Archived from the original on 2025-08-14.
  18. ^ Saito, S. (1997). "Carbon Nanotubes for Next-Generation Electronics Devices". Science. 278 (5335): 77–78. doi:10.1126/science.278.5335.77. S2CID 137586409.
  19. ^ Cavalcanti, A.; Shirinzadeh, B.; Freitas Jr, Robert A. & Hogg, Tad (2008). "Nanorobot architecture for medical target identification". Nanotechnology. 19 (1): 015103(15pp). Bibcode:2008Nanot..19a5103C. doi:10.1088/0957-4484/19/01/015103. S2CID 15557853.
  20. ^ Cheng, Mark Ming-Cheng; Cuda, Giovanni; Bunimovich, Yuri L; Gaspari, Marco; Heath, James R; Hill, Haley D; Mirkin,Chad A; Nijdam, A Jasper; Terracciano, Rosa; Thundat, Thomas; Ferrari, Mauro (2006). "Nanotechnologies for biomolecular detection and medical diagnostics". Current Opinion in Chemical Biology. 10 (1): 11–19. doi:10.1016/j.cbpa.2006.01.006. PMID 16418011.
  21. ^ Patolsky, F.; Timko, B.P.; Yu, G.; Fang, Y.; Greytak, A.B.; Zheng, G.; Lieber, C.M. (2006). "Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays". Science. 313 (5790): 1100–1104. Bibcode:2006Sci...313.1100P. doi:10.1126/science.1128640. PMID 16931757. S2CID 3178344.
  22. ^ Frist, W.H. (2005). "Health care in the 21st century". N. Engl. J. Med. 352 (3): 267–272. doi:10.1056/NEJMsa045011. PMID 15659726.
  23. ^ Cavalcanti, A.; Shirinzadeh, B.; Zhang, M. & Kretly, L.C. (2008). "Nanorobot Hardware Architecture for Medical Defense" (PDF). Sensors. 8 (5): 2932–2958. Bibcode:2008Senso...8.2932C. doi:10.3390/s8052932. PMC 3675524. PMID 27879858.
  24. ^ Couvreur, P. & Vauthier, C. (2006). "Nanotechnology: intelligent design to treat complex disease". Pharm. Res. 23 (7): 1417–1450. doi:10.1007/s11095-006-0284-8. PMID 16779701. S2CID 1520698.

Further reading

[edit]
[edit]
梦见墓碑是什么意思 胃病能吃什么水果 梦见胎死腹中预示什么 一什么叮咛 什么是能量
漱口杯什么材质好 乙肝是什么病严重吗 失温是什么意思 病是什么结构的字 62岁属什么
右下腹疼挂什么科 胃不舒服吃什么好 睡眠模式是什么意思 宫颈炎吃什么药好 手指发麻什么原因
冠冕是什么意思 胆红素高是什么意思 怄气是什么意思 肾不好有什么症状 烤乳猪用的是什么猪
七月九号是什么日子hcv8jop2ns4r.cn 苦甲水是什么hcv8jop5ns1r.cn 4月8号是什么星座hcv9jop0ns1r.cn 脚抽筋是什么原因hcv8jop1ns5r.cn 猪油用什么容器装好hcv8jop7ns1r.cn
洛阳有什么好玩的hcv9jop7ns5r.cn 二月二十三日是什么星座hcv9jop7ns5r.cn 为什么老是口腔溃疡beikeqingting.com 耳声发射检查是什么hcv9jop4ns0r.cn lily是什么花hcv9jop2ns5r.cn
什么的水果hcv9jop4ns2r.cn 美女如云什么意思qingzhougame.com 疖肿什么意思youbangsi.com roi是什么hcv9jop1ns5r.cn 小腹疼痛什么原因helloaicloud.com
熥是什么意思hcv8jop5ns1r.cn 观音土为什么能吃jingluanji.com 龙筋是什么hcv9jop5ns2r.cn 好事多磨是什么意思hcv9jop0ns7r.cn cd是什么意思啊bjhyzcsm.com
百度