举案齐眉是什么意思| 茶化石属于什么茶| 催丹香是什么意思| save是什么意思| jennie什么意思| 脚心出汗是什么原因| 减脂是什么意思| 口腔溃疡吃什么药好得快| 硬度不够是什么原因| 骨皮质断裂是什么意思| 中意你是什么意思| 默哀是什么意思| 吃什么可以降血压| 男性腰疼挂什么科| 万岁是什么意思| 打狂犬疫苗不能吃什么食物| 转氨酶高是什么引起的| 女性尿特别黄是什么原因| 参保是什么意思| 犬和狗有什么区别| 惶恐是什么意思| 戴珍珠手链有什么好处| 什么关系| 时光静好是什么意思| 见利忘义是什么生肖| 男士蛋皮痒用什么药| 重金属是什么| 孕妇生气对胎儿有什么影响| 咳嗽两个月了一直不好是什么原因| 皮肤一块白一块白的是什么原因| 9月份是什么星座| 马牛羊鸡犬豕中的豕指的是什么| 氯读什么拼音| 孩子感冒咳嗽吃什么药| 腊肉炒什么好吃| 红萝卜和胡萝卜有什么区别| 骨质疏松用什么药好| 电动汽车什么牌子好| 10月16日是什么星座| 阴历7月22是什么日子| 鸡胸挂什么科| 孕妇梦见龙是什么征兆| 无私是什么意思| 焦虑症是什么原因引起的| 月亮星座是什么意思| 紫色和蓝色混合是什么颜色| 卒中优先是什么意思| 三伏天吃什么最好| 胳膊麻是什么原因| 礽是什么意思| 苦甲水是什么| 空调病吃什么药| 木林森属于什么档次| 总是想吐是什么原因| 口杯是什么意思| 丝苗米是什么米| 上面一个处下面一个日是什么字| 梦见穿袜子是什么意思| 豆浆配什么主食当早餐| 西施是什么生肖| sku图是什么意思| 我行我素的人什么性格| bl和bg是什么意思| 女人代谢慢吃什么效果最快| 女命七杀代表什么| 别有洞天是什么生肖| 做腹部彩超挂什么科| 胃病吃什么好| 男人得了hpv有什么症状| 什么是新时代| chanel什么牌子| 蛐蛐吃什么| 江西的简称是什么| 脸麻手麻是什么原因| 查激素水平挂什么科| 农历12月26日是什么星座| 208是什么意思| 下巴脱臼挂什么科| 晚上七八点是什么时辰| 麒麟儿是什么意思| 韭菜籽配什么壮阳最猛| 儿童上火了吃什么降火最快| 春代表什么生肖| 中医四诊指的是什么| 咳嗽咳出血是什么原因| 3p什么意思| 5月26是什么星座| 甲亢什么不能吃| 牙疼有什么办法| 孕妇腿抽筋是什么原因| 男性左下腹疼痛是什么原因| 呼吸快是什么原因| 舌头发麻是什么原因引起的| 吃一个海参相当于吃了什么| 青蛙吃什么食物| 为什么会突然长智齿| 伤元气是什么意思| 减肥晚餐吃什么| 缺铁性贫血吃什么食物| 手串14颗代表什么意思| 茶叶有什么功效与作用| 丰胸吃什么| 手指发麻是什么原因引起的| 增生是什么原因造成的| 舟状腹见于什么疾病| 经济危机是什么意思| 蜂蜜不能和什么食物一起吃| 苋菜与什么食物相克| 犹太人为什么叫犹太人| 素鸡是什么| 妤什么意思| 身上为什么会起湿疹| 爱情的本质是什么| mol是什么意思| 齐耳短发适合什么脸型| 迎刃而解是什么意思| 腿肚子抽筋是什么原因| 皮肤白斑点是什么原因| 手术后可以吃什么| 库克是什么| 一什么商店| 什么水果不能放冰箱| 结婚下大雨是什么兆头| 媱五行属什么| aj是什么意思| pa66是什么材料| 环孢素是什么药| 3岁宝宝流鼻血是什么原因| 肺主治节是什么意思| 铜绿假单胞菌用什么抗生素| 小孩心肌炎有什么症状| 吃什么指甲长得快| 霉菌是什么东西| special是什么意思| 截单是什么意思| 臣字五行属什么| 茶叶杀青是什么意思| 皮肤发红发烫是什么原因| 2023什么年| 欧米茄什么意思| 传导阻滞是什么意思| 梦见大火烧房子是什么意思| 血管病变是什么意思| 扫地僧是什么意思| 电影监制是做什么的| 小便发红是什么症状男| ercp是什么| 无氧运动是什么| 暗送秋波是什么意思| 恭喜恭喜是什么意思| 熊猫属于什么科| 生蛇是什么病| 为什么不结婚| apl是什么意思| 晨跑有什么好处| 不怕热是什么体质| 夏天都有什么花| 富裕是什么意思| 血红素高是什么原因| 外婆家是什么菜系| pvt是什么意思| 什么颜色的猫最旺财| 翔是什么意思| 湖北属于什么地区| 蚝油是用什么做的| 经常打飞机有什么危害| 较重闭合性跌打损伤是什么意思| 反应蛋白偏高说明什么| 白醋泡脚有什么功效| 山竹有什么功效| 痛风是什么意思| 眼睛红吃什么药| 共济失调是什么意思| 一什么棉花糖| 坐怀不乱柳下惠什么意思| 定义是什么| 旗袍穿什么鞋子好看图| 硕字五行属什么| 鲁班是什么家| 鸟儿为什么会飞| 铁石心肠是什么意思| 深圳少年宫有什么好玩的| 万人空巷是什么意思| 血便是什么原因引起的| 工匠精神的核心是什么| 鸡蛋吃多了有什么坏处| 金项链断了有什么预兆| 吃什么可以补血| vogue是什么牌子| 大堤是什么意思| 12度穿什么衣服| 开胃菜都有什么| 六月初一有什么讲究| 海带和什么相克| 氨酶偏高是什么意思| 淋巴门消失是什么意思| 梦见冬瓜是什么意思| 运费险是什么意思| ibs是什么单位| 焦亚硫酸钠是什么| 无穷大是什么意思| 昀是什么意思| 狮子吃什么| 躺下就头晕是什么原因| 月经前有褐色分泌物是什么原因| 女生下体瘙痒用什么药| 脖子有痣代表什么意思| 不能吃辣是什么原因| 用什么洗脸可以祛斑| 脚踝肿是什么原因| 家里为什么会有壁虎| 心脏不好吃什么水果好| 新生儿五行缺什么查询| brunch是什么意思| 膀胱充盈差是什么意思| 关节疼痛吃什么药| 发烧适合吃什么水果| 试商是什么意思| 堃读什么| 肺结节是什么症状| 央企与国企有什么区别| 眼睛流泪用什么眼药水| 属马的是什么星座| 69属什么| 5月19号是什么星座| 坐围是什么| 为什么会有跳蚤| 经常不吃晚饭对身体有什么影响| 什么药吃了死的快| 生物钟是什么| 零零年属什么| 绝眼是什么原因引起的| 太平洋中间是什么| 江西有什么好玩的景点| 什么是匝道| 8.9是什么星座| 什么是关键词| 梦见纸人是什么意思| 吃阿胶有什么好处| 什么是天眼| 巴字加一笔是什么字| 献完血应该注意什么| 女装大佬什么意思| 香港电话前面加什么| 三七粉吃了有什么好处| 白芷炖肉起什么作用| 手发胀是什么原因造成的| 澈字五行属什么| vb610是什么药| 太原有什么特产| 大便出血吃什么药| 亚克力是什么材质| 透明质酸是什么| 什么病误诊为帕金森| 瞬移是什么意思| 看见老鼠有什么预兆| single是什么意思| 11.9是什么星座| 白塞氏是一种什么病| 碳素墨水用什么能洗掉| 糖尿病人可以吃什么零食| 为什么前壁容易生男孩| 主人杯是什么意思| 来大姨妈前有什么症状| 百度Jump to content

自在什么意思

From Wikipedia, the free encyclopedia
(Redirected from Structure of the earth)
Geological cross section of Earth, showing the different layers of the interior.
百度 通过一系列举措,把总书记重要讲话精神落到实处。

The internal structure of Earth is the layers of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere, and solid mantle, a liquid outer core whose flow generates the Earth's magnetic field, and a solid inner core.

Scientific understanding of the internal structure of Earth is based on observations of topography and bathymetry, observations of rock in outcrop, samples brought to the surface from greater depths by volcanoes or volcanic activity, analysis of the seismic waves that pass through Earth, measurements of the gravitational and magnetic fields of Earth, and experiments with crystalline solids at pressures and temperatures characteristic of Earth's deep interior.

Global properties

[edit]
Chemical composition of the upper internal structure of Earth[1]
Chemical element Continental crust (%) Upper mantle (%) Pyrolite model (%) Chondrite model (1) (%) Chondrite model (2) (%)
MgO 4.4 36.6 38.1 26.3 38.1
Al2O3 15.8 4.6 4.6 2.7 3.9
SiO2 59.1 45.4 45.1 29.8 43.2
CaO 6.4 3.7 3.1 2.6 3.9
FeO 6.6 8.1 7.9 6.4 9.3
Other oxides 7.7 1.4 1.2 N/A 5.5
Fe N/A N/A N/A 25.8 N/A
Ni N/A N/A N/A 1.7 N/A
Si N/A N/A N/A 3.5 N/A

Note: In chondrite model (1), the light element in the core is assumed to be Si. Chondrite model (2) is a model of chemical composition of the mantle corresponding to the model of core shown in chondrite model (1).[1]

see caption
A photograph of Earth taken by the crew of Apollo 17 in 1972. A processed version became widely known as The Blue Marble.[2][3]

Measurements of the force exerted by Earth's gravity can be used to calculate its mass. Astronomers can also calculate Earth's mass by observing the motion of orbiting satellites. Earth's average density can be determined through gravimetric experiments, which have historically involved pendulums. The mass of Earth is about 6×1024 kg.[4] The average density of Earth is 5.515 g/cm3.[5]

Layers

[edit]
Schematic view of Earth's interior structure.
  1.   upper mantle
  2.   lower mantle
  1. Mohorovi?i? discontinuity
  2. core–mantle boundary
  3. outer core–inner core boundary

The structure of Earth can be defined in two ways: by mechanical properties such as rheology, or chemically. Mechanically, it can be divided into lithosphere, asthenosphere, mesospheric mantle, outer core, and the inner core. Chemically, Earth can be divided into the crust, upper mantle, lower mantle, outer core, and inner core.[6] The geologic component layers of Earth are at increasing depths below the surface.[6]: 146 

Crust and lithosphere

[edit]
Map of Earth's tectonic plates
Earth's major plates, which are:

Earth's crust ranges from 5 to 70 kilometres (3.1–43.5 mi)[7] in depth and is the outermost layer.[8] The thin parts are the oceanic crust, which underlies the ocean basins (5–10 km) and is mafic-rich[9] (dense iron-magnesium silicate mineral or igneous rock).[10] The thicker crust is the continental crust, which is less dense[11] and is felsic-rich (igneous rocks rich in elements that form feldspar and quartz).[12] The rocks of the crust fall into two major categories – sial (aluminium silicate) and sima (magnesium silicate).[13] It is estimated that sima starts about 11 km below the Conrad discontinuity,[14] though the discontinuity is not distinct and can be absent in some continental regions.[15]

Earth's lithosphere consists of the crust and the uppermost mantle.[16] The crust-mantle boundary occurs as two physically different phenomena. The Mohorovi?i? discontinuity is a distinct change of seismic wave velocity. This is caused by a change in the rock's density[17] – immediately above the Moho, the velocities of primary seismic waves (P wave) are consistent with those through basalt (6.7–7.2 km/s), and below they are similar to those through peridotite or dunite (7.6–8.6 km/s).[18] Second, in oceanic crust, there is a chemical discontinuity between ultramafic cumulates and tectonized harzburgites, which has been observed from deep parts of the oceanic crust that have been obducted onto the continental crust and preserved as ophiolite sequences.[clarification needed]

Many rocks making up Earth's crust formed less than 100 million years ago; however, the oldest known mineral grains are about 4.4 billion years old, indicating that Earth has had a solid crust for at least 4.4 billion years.[19]

Mantle

[edit]
Earth's crust and mantle, Mohorovi?i? discontinuity between bottom of crust and solid uppermost mantle

Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer.[20] [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust]. The mantle is divided into upper and lower mantle[21] separated by a transition zone.[22] The lowest part of the mantle next to the core-mantle boundary is known as the D″ (D-double-prime) layer.[23] The pressure at the bottom of the mantle is ≈140 GPa (1.4 Matm).[24] The mantle is composed of silicate rocks richer in iron and magnesium than the overlying crust.[25] Although solid, the mantle's extremely hot silicate material can flow over very long timescales.[26] Convection of the mantle propels the motion of the tectonic plates in the crust. The source of heat that drives this motion is the decay of radioactive isotopes in Earth's crust and mantle combined with the initial heat from the planet's formation[27] (from the potential energy released by collapsing a large amount of matter into a gravity well, and the kinetic energy of accreted matter).

Due to increasing pressure deeper in the mantle, the lower part flows less easily, though chemical changes within the mantle may also be important. The viscosity of the mantle ranges between 1021 and 1024 pascal-second, increasing with depth.[28] In comparison, the viscosity of water at 300 K (27 °C; 80 °F) is 0.89 millipascal-second [29] and pitch is (2.3 ± 0.5) × 108 pascal-second.[30]

Core

[edit]
A diagram of Earth's geodynamo and magnetic field, which could have been driven in Earth's early history by the crystallization of magnesium oxide, silicon dioxide, and iron(II) oxide. Convection of Earth's outer core is displayed alongside magnetic field lines.
A diagram of Earth's geodynamo and magnetic field, which could have been driven in Earth's early history by the crystallization of magnesium oxide, silicon dioxide, and iron(II) oxide

Earth's outer core is a fluid layer about 2,260 km (1,400 mi) in height (i.e. distance from the highest point to the lowest point at the edge of the inner core) [36% of the Earth's radius, 15.6% of the volume] and composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle.[31] Its outer boundary lies 2,890 km (1,800 mi) beneath Earth's surface. The transition between the inner core and outer core is located approximately 5,150 km (3,200 mi) beneath Earth's surface. Earth's inner core is the innermost geologic layer of the planet Earth. It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 19% of Earth's radius [0.7% of volume] or 70% of the Moon's radius.[32][33]

The inner core was discovered in 1936 by Inge Lehmann and is composed primarily of iron and some nickel. Since this layer is able to transmit shear waves (transverse seismic waves), it must be solid. Experimental evidence has at times been inconsistent with current crystal models of the core.[34] Other experimental studies show a discrepancy under high pressure: diamond anvil (static) studies at core pressures yield melting temperatures that are approximately 2000 K below those from shock laser (dynamic) studies.[35][36] The laser studies create plasma,[37] and the results are suggestive that constraining inner core conditions will depend on whether the inner core is a solid or is a plasma with the density of a solid. This is an area of active research.

In early stages of Earth's formation about 4.6 billion years ago, melting would have caused denser substances to sink toward the center in a process called planetary differentiation (see also the iron catastrophe), while less-dense materials would have migrated to the crust. The core is thus believed to largely be composed of iron (80%), along with nickel and one or more light elements, whereas other dense elements, such as lead and uranium, either are too rare to be significant or tend to bind to lighter elements and thus remain in the crust (see felsic materials). Some have argued that the inner core may be in the form of a single iron crystal.[38][39]

Under laboratory conditions a sample of iron–nickel alloy was subjected to the core-like pressure by gripping it in a vise between 2 diamond tips (diamond anvil cell), and then heating to approximately 4000 K. The sample was observed with x-rays, and strongly supported the theory that Earth's inner core was made of giant crystals running north to south.[40][41]

The composition of Earth bears strong similarities to that of certain chondrite meteorites, and even to some elements in the outer portion of the Sun.[42][43] Beginning as early as 1940, scientists, including Francis Birch, built geophysics upon the premise that Earth is like ordinary chondrites, the most common type of meteorite observed impacting Earth. This ignores the less abundant enstatite chondrites, which formed under extremely limited available oxygen, leading to certain normally oxyphile elements existing either partially or wholly in the alloy portion that corresponds to the core of Earth.[citation needed]

Dynamo theory suggests that convection in the outer core, combined with the Coriolis effect, gives rise to Earth's magnetic field. The solid inner core is too hot to hold a permanent magnetic field (see Curie temperature) but probably acts to stabilize the magnetic field generated by the liquid outer core. The average magnetic field in Earth's outer core is estimated to measure 2.5 milliteslas (25 gauss), 50 times stronger than the magnetic field at the surface.[44]

The magnetic field generated by core flow is essential to protect life from interplanetary radiation and prevent the atmosphere from dissipating in the solar wind. The rate of cooling by conduction and convection is uncertain,[45] but one estimate is that the core would not be expected to freeze up for approximately 91 billion years, which is well after the Sun is expected to expand, sterilize the surface of the planet, and then burn out.[46][better source needed]

Seismology

[edit]

The layering of Earth has been inferred indirectly using the time of travel of refracted and reflected seismic waves created by earthquakes. The core does not allow shear waves to pass through it, while the speed of travel (seismic velocity) is different in other layers. The changes in seismic velocity between different layers causes refraction owing to Snell's law, like light bending as it passes through a prism. Likewise, reflections are caused by a large increase in seismic velocity and are similar to light reflecting from a mirror.

See also

[edit]

References

[edit]
  1. ^ a b The Structure of Earth and Its Constituents (PDF). Princeton University Press. p. 4.
  2. ^ Petsko, Gregory A. (28 April 2011). "The blue marble". Genome Biology. 12 (4): 112. doi:10.1186/gb-2011-12-4-112. PMC 3218853. PMID 21554751.
  3. ^ "Apollo Imagery – AS17-148-22727". NASA. 1 November 2012. Archived from the original on 20 April 2019. Retrieved 22 October 2020.
  4. ^ ME = 5·9722×1024 kg ± 6×1020 kg. "2016 Selected Astronomical Constants Archived 2025-08-14 at the Wayback Machine" in The Astronomical Almanac Online (PDF), USNOUKHO, archived from the original on 2025-08-14, retrieved 2025-08-14
  5. ^ "Planetary Fact Sheet". Lunar and Planetary Science. NASA. Archived from the original on 24 March 2016. Retrieved 2 January 2009.
  6. ^ a b Montagner, Jean-Paul (2011). "Earth's structure, global". In Gupta, Harsh (ed.). Encyclopedia of solid earth geophysics. Springer Science & Business Media. ISBN 9789048187010.
  7. ^ Andrei, Mihai (21 August 2018). "What are the layers of the Earth?". ZME Science. Archived from the original on 12 May 2020. Retrieved 28 June 2019.
  8. ^ Chinn, Lisa (25 April 2017). "Earth's Structure From the Crust to the Inner Core". Sciencing. Leaf Group Media. Archived from the original on 30 July 2020. Retrieved 28 June 2019.
  9. ^ Rogers, N., ed. (2008). An Introduction to Our Dynamic Planet. Cambridge University Press and The Open University. p. 19. ISBN 978-0-521-49424-3. Archived from the original on 2025-08-14. Retrieved 2025-08-14.
  10. ^ Jackson, Julia A., ed. (1997). "mafic". Glossary of Geology (4th ed.). Alexandria, Virginia: American Geological Institute. ISBN 0922152349.
  11. ^ "Continental crust". Encyclop?dia Britannica. 5 September 2023. Retrieved 6 October 2024.
  12. ^ Schmidt, Victor A.; Harbert, William (1998). "The Living Machine: Plate Tectonics". Planet Earth and the New Geosciences (3rd ed.). Kendall/Hunt. p. 442. ISBN 978-0-7872-4296-1. Archived from the original on 2025-08-14. Retrieved 2025-08-14. Schmidt, Victor A.; Harbert, William. "Unit 3: The Living Machine: Plate Tectonics". Planet Earth and the New Geosciences. Poznańb: Adam Mickiewicz University. Archived from the original on 2025-08-14.
  13. ^ Hess, H. (2025-08-14). "The oceanic crust". Journal of Marine Research. 14 (4): 424. It has been common practice to subdivide the crust into sial and sima. These terms refer to generalized compositions, sial being those rocks rich in Si and Al and sima those rich in Si and Mg.
  14. ^ Kearey, P.; Klepeis, K. A.; Vine, F. J. (2009). Global Tectonics (3 ed.). John Wiley & Sons. pp. 19–21. ISBN 9781405107778. Retrieved 30 June 2012.
  15. ^ Lowrie, W. (1997). Fundamentals of Geophysics. Cambridge University Press. p. 149. ISBN 9780521467285. Retrieved 30 June 2012.
  16. ^ Himiyama, Yukio; Satake, Kenji; Oki, Taikan, eds. (2020). Human Geoscience. Singapore: Springer Science+Business Media. p. 27. ISBN 978-981-329-224-6. OCLC 1121043185.
  17. ^ Rudnick, R. L.; Gao, S. (2025-08-14), Holland, Heinrich D.; Turekian, Karl K. (eds.), "3.01 – Composition of the Continental Crust", Treatise on Geochemistry, 3, Pergamon: 659, Bibcode:2003TrGeo...3....1R, doi:10.1016/b0-08-043751-6/03016-4, ISBN 978-0-08-043751-4, retrieved 2025-08-14
  18. ^ Cathcart, R. B. & ?irkovi?, M. M. (2006). Badescu, Viorel; Cathcart, Richard Brook & Schuiling, Roelof D. (eds.). Macro-engineering: a challenge for the future. Springer. p. 169. ISBN 978-1-4020-3739-9.
  19. ^ "Oldest rock shows Earth was a hospitable young planet". Spaceflight Now. National Science Foundation. 2025-08-14. Archived from the original on 2025-08-14. Retrieved 2025-08-14.
  20. ^ Nace, Trevor (16 January 2016). "Layers Of The Earth: What Lies Beneath Earth's Crust". Forbes. Archived from the original on 5 March 2020. Retrieved 28 June 2019.
  21. ^ Evers, Jeannie (11 August 2015). "Mantle". National Geographic. National Geographic Society. Archived from the original on 12 May 2016. Retrieved 28 June 2019.
  22. ^ Yu, Chunquan; Day, Elizabeth A.; de Hoop, Maarten V.; Campillo, Michel; Goes, Saskia; Blythe, Rachel A.; van der Hilst, Robert D. (28 March 2018). "Compositional heterogeneity near the base of the mantle transition zone beneath Hawaii". Nat Commun. 9 (9): 1266. Bibcode:2018NatCo...9.1266Y. doi:10.1038/s41467-018-03654-6. PMC 5872023. PMID 29593266.
  23. ^ Krieger, Kim (24 March 2004). "D Layer Demystified". Science News. American Association for the Advancement of Science. Archived from the original on 10 July 2022. Retrieved 5 November 2016.
  24. ^ Dolbier, Rachel. "Coring the Earth" (PDF). W. M. Keck Earth Science and Mineral Engineering Museum. University of Nevada, Reno: 5. Archived from the original (PDF) on 7 September 2015. Retrieved 28 June 2019.
  25. ^ Cain, Fraser (26 March 2016). "What is the Earth's Mantle Made Of?". Universe Today. Archived from the original on 6 November 2010. Retrieved 28 June 2019.
  26. ^ Shaw, Ethan (22 October 2018). "The Different Properties of the Asthenosphere & the Lithosphere". Sciencing. Leaf Group Media. Archived from the original on 30 July 2020. Retrieved 28 June 2019.
  27. ^ Preuss, Paul (July 17, 2011). "What Keeps the Earth Cooking?". Lawrence Berkeley National Laboratory. University of California, Berkeley. Archived from the original on 21 January 2022. Retrieved 28 June 2019.
  28. ^ Walzer, Uwe; Hendel, Roland; Baumgardner, John. "Mantle Viscosity and the Thickness of the Convective Downwellings". Los Alamos National Laboratory. Universit?t Heidelberg. Archived from the original on 26 August 2006. Retrieved 28 June 2019.
  29. ^ Haynes, William M.; David R., Lide; Bruno, Thomas J., eds. (2017). CRC Handbook of Chemistry and Physics (97th ed.). Boca Raton, Florida: CRC Press. Section 6 page 247. ISBN 978-1-4987-5429-3. OCLC 957751024.
  30. ^ Edgeworth, R.; Dalton, B.J.; Parnell, T. "The Pitch Drop Experiment". The University of Queensland Australia. Archived from the original on 28 March 2013. Retrieved 15 October 2007.
  31. ^ "Earth's Interior". Science & Innovation. National Geographic. 18 January 2017. Archived from the original on 18 January 2019. Retrieved 14 November 2018.
  32. ^ Monnereau, Marc; Calvet, Marie; Margerin, Ludovic; Souriau, Annie (21 May 2010). "Lopsided growth of Earth's inner core". Science. 328 (5981): 1014–1017. Bibcode:2010Sci...328.1014M. doi:10.1126/science.1186212. PMID 20395477. S2CID 10557604.
  33. ^ Engdahl, E.R.; Flinn, E.A.; Massé, R.P. (1974). "Differential PKiKP travel times and the radius of the inner core". Geophysical Journal International. 39 (3): 457–463. Bibcode:1974GeoJ...39..457E. doi:10.1111/j.1365-246x.1974.tb05467.x.
  34. ^ Stixrude, Lars; Cohen, R.E. (January 15, 1995). "Constraints on the crystalline structure of the inner core: Mechanical instability of BCC iron at high pressure". Geophysical Research Letters. 22 (2): 125–28. Bibcode:1995GeoRL..22..125S. doi:10.1029/94GL02742. Archived from the original on August 8, 2022. Retrieved January 2, 2019.
  35. ^ Benuzzi-Mounaix, A.; Koenig, M.; Ravasio, A.; Vinci, T. (2006). "Laser-driven shock waves for the study of extreme matter states". Plasma Physics and Controlled Fusion. 48 (12B): B347. Bibcode:2006PPCF...48B.347B. doi:10.1088/0741-3335/48/12B/S32. S2CID 121164044.
  36. ^ Remington, Bruce A.; Drake, R. Paul; Ryutov, Dmitri D. (2006). "Experimental astrophysics with high power lasers and Z pinches". Reviews of Modern Physics. 78 (3): 755. Bibcode:2006RvMP...78..755R. doi:10.1103/RevModPhys.78.755. Archived from the original on 2025-08-14. Retrieved 2025-08-14.
  37. ^ Benuzzi-Mounaix, A.; Koenig, M.; Husar, G.; Faral, B. (June 2002). "Absolute equation of state measurements of iron using laser driven shocks". Physics of Plasmas. 9 (6): 2466. Bibcode:2002PhPl....9.2466B. doi:10.1063/1.1478557.
  38. ^ Schneider, Michael (1996). "Crystal at the Center of the Earth". Projects in Scientific Computing, 1996. Pittsburgh Supercomputing Center. Archived from the original on 5 February 2007. Retrieved 8 March 2019.
  39. ^ Stixrude, L.; Cohen, R.E. (1995). "High-Pressure Elasticity of Iron and Anisotropy of Earth's Inner Core". Science. 267 (5206): 1972–75. Bibcode:1995Sci...267.1972S. doi:10.1126/science.267.5206.1972. PMID 17770110. S2CID 39711239.
  40. ^ BBC News, "What is at the centre of the Earth? Archived 2025-08-14 at the Wayback Machine. BBC.co.uk (2025-08-14). Retrieved on 2025-08-14.
  41. ^ Ozawa, H.; al., et (2011). "Phase Transition of FeO and Stratification in Earth's Outer Core". Science. 334 (6057): 792–94. Bibcode:2011Sci...334..792O. doi:10.1126/science.1208265. PMID 22076374. S2CID 1785237.
  42. ^ Herndon, J.M. (1980). "The chemical composition of the interior shells of the Earth". Proc. R. Soc. Lond. A372 (1748): 149–54. Bibcode:1980RSPSA.372..149H. doi:10.1098/rspa.1980.0106. JSTOR 2398362. S2CID 97600604.
  43. ^ Herndon, J.M. (2005). "Scientific basis of knowledge on Earth's composition" (PDF). Current Science. 88 (7): 1034–37. Archived (PDF) from the original on 2025-08-14. Retrieved 2025-08-14.
  44. ^ Buffett, Bruce A. (2010). "Tidal dissipation and the strength of the Earth's internal magnetic field". Nature. 468 (7326): 952–94. Bibcode:2010Natur.468..952B. doi:10.1038/nature09643. PMID 21164483. S2CID 4431270.
  45. ^ David K. Li (19 January 2022). "Earth's core cooling faster than previously thought, researchers say". NBC News.
  46. ^ "Core". National Geographic. Retrieved 15 July 2024.

Further reading

[edit]
[edit]
有什么笑话 女人梦见自己掉牙齿是什么征兆 榴莲什么季节吃最好 毛遂自荐是什么意思 什么是心理健康
脑血流图能检查出什么 国企是什么 骨折不能吃什么 十月份什么星座 母胎单身是什么意思
ab型rh阳性是什么意思 足度念什么 怀孕吃什么可以快速流产 粉刺长什么样图片 心脏跳的快吃什么药
衣禄是什么意思 bl是什么意思 爱放屁是什么原因引起的 TPS什么意思 阿托品属于什么类药物
枭神夺食会发生什么imcecn.com 皮蛋是什么蛋sanhestory.com 六味地黄丸什么时候吃最好hcv7jop9ns7r.cn 大姨妈来了喝红糖水有什么功效hcv9jop2ns3r.cn 鱼泡是鱼的什么器官imcecn.com
做梦梦见狗是什么意思hcv7jop9ns1r.cn 咳出痰带血是什么原因hcv8jop6ns5r.cn 子宫腺肌症是什么意思hcv9jop0ns4r.cn 一只眼皮肿是什么原因hcv7jop5ns4r.cn 沉珂是什么意思hcv9jop8ns1r.cn
木克什么hcv9jop4ns9r.cn 贫血吃什么药补血最快hcv9jop1ns4r.cn 痔疮吃什么水果0735v.com 桃子不能和什么一起吃hcv8jop6ns5r.cn 闰六月要给父母买什么hcv9jop0ns8r.cn
翻糖蛋糕是什么意思hcv7jop5ns0r.cn 转氨酶偏高是什么原因引起的hcv7jop7ns1r.cn 儿保是什么hcv9jop8ns2r.cn 苦命是什么意思hcv7jop6ns1r.cn 蛋白粉什么味道hcv8jop3ns5r.cn
百度